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Abstract. This seminar paper explores the possibilities of deriving pair-
wise word similarities from page counts of web search engines. We mo-
tivate the problem, introduce selected papers and provide further exem-
plification through theoretic considerations as well as implementation-
and evaluation of different measures.

1 Introduction

In the field of information retrieval we treat words as the semantic atoms of a
text, because we are interested in its content, not its linguistic shape. We can
agree that some words have a more similar meaning than others, but there is
no natural measure for their similarity. However, there is a great need to have a
function that would estimate our understanding of language by mapping word
pairs on concrete distance values for further processing. Different estimators have
been developed and provide benefits to almost all applications of information
retrieval. Here are some example applications:

– natural language processing (syntax analyses, word sense disambiguation)
– query processing (relevance of a document for a query)
– query result expansion (for instance suggest similar)
– indexing and topic modeling
– clustering and classification of words and documents
– visualization of words, documents and corpora (positioning)

Since the first attempts in the sixties, research in information retrieval, data
mining, computer linguistics and information theory has produced a vast number
of methods to estimate semantic word similarity, either as its main objective or
as part of a solution to a related problem. Most of all, word similarity is a crucial
part of document similarity. We divide those methods into two fundamentally
different groups: On the one hand, we might start at the word of interest and
look-up its specific quality and relations to other words in order to logically
infer from that theoretic knowledge. On the other hand, we might look at the

? sebastian.fichtner@uni-konstanz.de



2

whole context from a bird’s eye view and apply statistical methods on text to
quantify some form of word co-occurrence. Of course, different approaches can
be combined, but it helps to distinguish the opposite principles.

bottom up top down
language data theory usage
instrument of reasoning logic statistics
analyzed property quality quantity

Prominent data sources for the bottom up method are WordNet, VerbNet,
FrameNet, OpenThesaurus and even Wikipedia. The data source for the top
down method is usually some text corpus which might be the specific text we
want to analyze, a large corpus representing all our language or anything in be-
tween. The type we want to discuss here uses the internet as the corpus and a
search engine to quantify the co-occurrence of words. Its idea is simple: When
we search for a combination of two words, the page count reflects how often both
words occur together. This co-occurrence relative to the separate occurrences of
both words reflects the significance of their co-occurrence. Words that appear
together in documents significantly more frequent than others must be more
semantically related and this relatedness might be a useful notion of similarity.
The following example was produced on google.com:

query god + knowledge + education
results (m) 652 49 334 206 709

knowledge and education are significantly more similar (206m) than knowledge
and god (49m). This is obvious, because the separate queries for god (652m)
and education (709m) produce quite similar page counts. If we had an explicit
calculation formula to turn page counts into a value for semantic distance, this
method would provide certain advantages:

– As a statistical top down approach, it needs no prior linguistic knowledge
and is easier to automate. Responsibility is given to the programmer and
the applied methods are more clinical.

– The corpus is the largest collection of documents in english language and
represents the language in general. It is equally applicable to any subject
area and provides high statistical significance.

– The corpus updates itself all the time and comprehends novel meanings of
words, like ’apple’ referencing the company instead of the fruit.

– The corpus is always accessible and consumes no storage space, although it
is huge.

– Calculations on the client side are very simple. Collecting, indexing and
counting of documents is taken over by the search engine.

– If need be, the collection of page counts can be heavily parallelized and even
be distributed on different computers.

In spite of its advantages, there are only few publications that explicitly pursue
this idea. These are the ones that come closest:
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– A web-based kernel function for measuring the similarity of short text
snippets (Sahami and Heilman, 2006)

– Measuring semantic similarity between words using web search engines
(Bollegala et al., 2007)

– Using web-search results to measure word-group similarity
(Gledson and Keane, 2008)

Throughout this seminar paper, we will refer to the publication of Gledson and
Keane (G&K) as a guideline and reference for our own thoughts and experiments,
for it covers the idea we have just descibed most accurately. We will not present
it in full detail, though.

2 Distance Functions

How will we calculate the actual distance between two words wA and wB? For
this purpose, web search results for the queries wA, wB and wA∧wB are modeled
as sets of hits A, B and A∩B with hit counts a = |A|, b = |B| and i = |A∩B|.
Now if we take (a, b, i) as the input vector to our distance function, the outcome

A \ B
A

B B \ A

A ∩ B

a - i
a

b b - i

i

Fig. 1: modeling search results as sets

shouldn’t change when the vector is scaled, meaning that the function would be
homogeneous of degree 0. What matters are only the relations between a, b and
i, which can be determined by only two ratios:

x = i/a = P (h ∈ B | h ∈ A)

y = i/b = P (h ∈ A | h ∈ B)

These are the conditional probabilities, that a search hit h for one word, is
also in the result set of the other one. Because both ratios have the size of the
intersection as their numerator, they can either both be 0 or both be greater
than 0: x > 0 ⇐⇒ y > 0. So the normalized distance function would be of the
form

d(wA, wB) = d(x, y) : ]0, 1]×]0, 1] ∪ {(0, 0)} → [0, 1]
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a - i

i

b - i

i
a

b
1 - x

y

1 - y

x
1

Fig. 2: normalization of hit counts

2.1 Criteria

To find a sound model for distance, we need criteria the distance function has
to fulfill. The most common criteria is that it has to be a metric:

1. commutation:
d(wA, wB) = d(wB , wA)

2. limits:
d(wA, wB) = 0 ⇐⇒ x = y = 1
d(wA, wB) = 1 ⇐⇒ x = y = 0

3. triangle inequality:
d(wA, wB) + d(wB , wC) ≥ d(wA, wC)

In addition to the metric property we need further criteria to match our intuitive
understanding of similarity. Note, that x and y both indicate directly how much
both words have in common:

4. none saturation:
d(x, y) > d(x + t, y) with 0 < t ≤ x̄

5. complementarity:
d(x, y) < d(x− t, y + t) with x ≤ y and 0 ≤ x− t < y + t ≤ 1

6. differentiability:
d(x, y) is differentiable in x and y

None saturation means, that similarity must increase, when one of both values
increases. Complementarity demands, that x and y are not perfect substitutes,
but complement each other, meaning that for a constant sum x + y similarity
must be greater when x and y are more equal. Natural distance would also be
differentiable, because the way in which similarity adjusts to small changes of x
or y would not change abruptly.

In the following sections, we will explain the distance function used by G&K
as well as some other selected ones, before we compare them all regarding our
six criteria.

2.2 Gledson & Keane

G&K calculated distance on small word groups. They order the words by decreas-
ing page count, and then determine the page count that each word together with
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all preceding words would produce. What they get are two arrays of decreasing
page counts, one for single- and one for combined queries. For these arrays the
gradients of their best fitting lines are calculated. Finally, the difference (not a
ratio!) of these gradients is taken as the distance measure. It reflects, how much
smaller the intersections are in comparison to single word result sets. However,
the value is not normalized. If we would double all retrieved page counts, dis-
tance would double as well, which means that more popular words appear more
distant. When we reduce this distance calculation to the special case of word
pairs, the function would be d0(wA, wB) = min(a − i, b − i). In order to make
this comparable to others, we normalize it:

d0(x, y) = min(x̄, ȳ)

a - i

i

b - i

i

1 - x

y

1 - y

x

Fig. 3: normalizing the distance of Gledson & Keane for word pairs

This function however only fulfills criteria (1), which is trivial. In the following
section we will look for a sound model of distance in the sense of our six criteria.

2.3 Other Distance Functions

The easiest way to map our ”partial” similarities x and y to one distance value
is to use their sum or product:

d1(x, y) = 1− 1

2
(x + y)

d2(x, y) = 1−
√
x ∗ y

d3(x, y) =
√
x̄ ∗ ȳ

Because we want to have a more concrete size, we further define a measure in
terms of probability. The probability, that a search hit h for any of two query
words is actually relevant to both, reflects their similarity:

d4(x, y) = 1− P (h ∈ A ∩B | h ∈ A ∪B)

= 1− i

a + b− i
= 1− 1

1
x + 1

y − 1
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1 - x

y 1 - y

x

(1 - x)(1 - y)

xy

Fig. 4: products reflecting similarity and distance

Still, because this is normalized by the size of the union of both results, which is
more like a sum, it should be brought down to the intrinsic order of magnitude.
We do this by normalizing with the average size of both result sets:

d5(x, y) = 1− i

(a + b)/2
= 1− 2

1
x + 1

y

We can apply vector based distance measures as well, because actually x and y
describe probability vectors. Let W be a random variable over our query words
wA and wB and let S be a random variable over subsets sij of all documents. sij
with i, j ∈ {0, 1} is the biggest set of documents (search hits) that is relevant to
wA if i = 1 and relevant to wB if j = 1. We build the probability distribution for
the joint variable (S,W ) where wA and wB are equally important and therefore
equally ”probable”:

W
wA wB

∑
S

s00 = \A \B 0 0 0
s01 = B \A 0 ȳ/2 ȳ/2
s10 = A \B x̄/2 0 x̄/2
s11 = A ∩B x/2 y/2 (x + y)/2∑

0.5 0.5 1

We now represent both words by their conditional probability vectors:

wA =


P (s00|wA)
P (s01|wA)
P (s10|wA)
P (s11|wA)

 =


0
0
x̄
x

 wB =


P (s00|wB)
P (s01|wB)
P (s10|wB)
P (s11|wB)

 =


0
ȳ
0
y


Both words together are represented by the absolute probability vector:

w =


P (s00)
P (s01)
P (s10)
P (s11)

 =


0

ȳ/2
x̄/2

(x + y)/2

 =
wA + wB

2
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The most prominent vector distance is the eucleadian distance which we nor-
malize by

√
2:

d6(x, y) =

√
(x− y)2 + x̄2 + ȳ2

2

Another possibility is inspired by the Needleman-Wunsch algorithm for global
sequence alignment. We try to align the sets A and B using the probability
distributions given by x and y. The length of the path that connects opposite
corners of the square in Figure (5) reflects the distance between wA and wB :

1 - x

y 1 - y

x

Fig. 5: deriving distance from path length

The path length is calculated as a sum of vector lengths:

√
2 ≤

∑
i,j∈{0,1}

∣∣∣∣(P (sij |wA)
P (sij |wB)

)∣∣∣∣ ≤ 2

Mapping this path length to the interval [0, 1] and simplifying its formula leads
to the distance function

d7(x, y) =

√
x2 + y2 + x̄ + ȳ −

√
2

2−
√

2

Though this a descriptive way to define distance, geometric length cannot be its
natural unit of measurement. That is why we add another function that is based
on entropy:

d8(x, y) = H(S)−H(S|W )

= H(w)− (0.5 ·H(wA) + 0.5 ·H(wB))

= H

(
wA + wB

2

)
− H(wA) + H(wB)

2

To explain the nature of this idea, is beyond the scope of this seminar paper, but
let’s just say, that d8 measures how much uncertainty is added, when we don’t
distinguish between our query words anymore and only consider the marginal
distribution of S. Note that the entropy value is naturally in [0, 1], because we
compare exactly two words.
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2.4 Comparison

Which distance function is best? The following table gives a comparison:

distance short name criteria broken comment on the dimension
d0 G&K 2, 3, 4, 5, 6 hard to interpret
d1 sum 5 average probability
d2 product sim harmonic average of probabilities
d3 product dist 5 harmonic average of probabilities
d4 intersection uni probability, too high
d5 intersection avg pseudo probability
d6 eucleadian 4, 5 geometric length
d7 path geometric length
d8 entropy entropy / bit / uncertainty

The diagrams in Figure (6) show cross sections through all functions. It is plain
to see, that they are quiet different. We conclude, that only d2, d5, d7 and d8
behave as we would expect from a distance function.

Fig. 6: cross section through distance functions d(x
2 , 1−

x
2 ) and d(x, 1

2 )

3 Implementation

G&K used the web APIs of YAHOO, MSN and Google. We did not use such
services, because they are different for every search engine, not always available
and often restricted in several ways. So we implemented the previously discussed
distance functions using C++ and Qt. A URL was build with the query words
and requested via basic network functions. Page counts were then parsed from
the HTML code of the result page. We tested nine public search engines, of
which three appeared unfeasible with this method. Google Scholar and YAHOO
refused to show more results after a while, because they detected automated
requests. Yippy.com gave us no results for certain words that we wanted to query
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in the evaluation step. The following engines were used successfully: alexa.com,
ask.com, bing.com, books.google.com, google.com and yolink.com.

(a) yippy.com (b) yahoo.com (c) yolink.com

(d) alexa.com (e) ask.com (f) bing.com

(g) scholar.google.com (h) books.google.com (i) google.com

Fig. 7: performance in mili seconds dependent on the number of queries

It became clear, that efficiency also had to be addressed: If we want to apply
our distance measure to the clustering of document corpora, pair wise distances
on a set of thousands of words would have to be calculated. Google requests
have a delay of around 100ms, so the queries for all distance calculations on
10000 words would take about 58 days. Since our client computer would just be
waiting for network responses most of the time, we parallelized that task using
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multithreading. In our implementation many requests are send to the search
engine before the first got answered. The diagrams in Figure (7) show for each
tested search engine, how efficiency improves with parallelization. Red and green
graphs show the performances of serial and parallel querying. It can be seen,
that performance also depends on the chosen search engine. Google seems to be
fastest.

4 Results

G&K used the TC-353 data set by Finkelstein et al. (2001) to evaluate their
distance measure. This data set contains 353 word pairs and their similarity
rated by humans. It is frequently used as test data for word similarity measures.
To evaluate a novel measure, its correlation with the user ratings of the TC-353
data set is calculated. G&K achieved the following correlation coefficients:

search engine correlation with TC-353
Yahoo 0.37
Live-Search (MSN) 0.4
Google 0.119

Fig. 8: correlations between distance functions
and test data on google.com

They used two other test data
sets as well. The TC-353 how-
ever is larger and newer then
the others and is available on
the internet, so we based our
little evaluation on it and use
it to compare our results with
those of G&K. The matrix in
Figure (8) shows the correla-
tions between all previously
discussed distance functions
and the TC-353 collection on
google.com. The matrices for
other search engines are dif-
ferent in interesting details,
but the bigger picture is the
same for all of them: The cor-
relation with the test data is
quiet small. Correlations be-
tween different distance func-

tions reveal, that there are two groups (or clusters) of distance functions as
indicated by the bright blocks.

The scatter plots in Figure (9) illustrate correlations in more detail. Each
point is a word pair from the TC-353 collection. The x-axis indicates the test
data distance, the y-axis indicates a distance function. Figure (9a) demonstrates
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the G&K distance function. Note, that our implementation produced a correla-
tion twice as high as G&K originally declared in their paper, even with their own
distance function. There are two possible reasons for this: First, we normalized
their distance function, which might introduce some improvement. Second, we
don’t rely on Google’s web service API, but parse the page counts that a normal
user would actually see.

(a) G&K: correlation 0.24 (b) Sum: correlation 0.25

Fig. 9: correlations with test data on google.com

Still, the visible correlation is not convincing. With perfect correlation, all
points would lie on some ascending straight line. We need to look at the actual
word pairs, to fully understand what we measure and why it hardly correlates
with our test data. Because the entropy distance fulfills all criteria and has an
adequate unit of measurement, we use it for this comparison. The following table
contains the 5 most similar and the 5 most distant word pairs according to our
entropy distance on google.com:

distance wA wB

0.465994 school center
0.490776 football basketball
0.495980 Mexico Brazil
0.516599 news report
0.559127 football soccer
... ... ...
0.997003 food rooster
0.997763 cup artifact
0.997820 water seepage
0.998217 sign recess
0.998265 Arafat Jackson
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We already can see the kind of relatedness that we measure. The most ”similar”
words are most likely to appear together in a web document. ”school center”
and ”news report” are even terms of their own. This relatedness is expressive
and might be useful in some context. To understand how it differs from the
”similarity” declared by by the test data set, we have to look at the greatest
and smallest ”errors”, that our distance measure is making according to the test
data. We take the absolute difference between test data and entropy distance as
an error indicator:

difference wA wB

... ... ...
0.844436 furnace stove
0.844556 fuck sex
0.852852 environment ecology
0.855167 Maradona football
0.864044 boy lad
0.877912 gem jewel
0.880851 magician wizard
0.882535 journey voyage
0.904411 dollar buck
0.910870 midday noon

difference wA wB

... ... ...
-0.054647 stock CD
-0.028305 stock phone
0.012364 sugar approach
0.017053 king cabbage
0.025341 professor cucumber
0.043268 chord smile
0.050790 noon string
0.054204 start year
0.054472 rooster voyage
0.057229 month hotel
... ... ...

Obviously our distance doesn’t capture the closeness of words in the test data.
The greatest ”errors” are made on very related words, whereas the smallest
”errors” occur with unrelated words. It must be said, that this comparison is
distorted by the fact, that our distance values are of course higher in general.
However, for the correlation coefficients this higher average doesn’t matter, and
the scatter plots support the observation, that most ”errors” are made by as-
signing high distance values to very related words.

5 Conclusion

Two technical issues were not tackled in this work: Some search engines that
have access to an immense corpus like Google does, partly estimate page counts.
It must be made clear, how the page counts are created and what they mean,
otherwise the whole idea stands on fragile grounds and doesn’t really work. Apart
from that, it is a tricky task to avoid detection of automated requests and be
fast at the same time. The idea to let the application pretend to be a browser,
is left for future implementation.

We learned, that there are many different definitions and measures of word
distance, and each of them is based on its own understanding of similarity or
respectively defines it. It makes no sense, to take one arbitrary definition as the
reference or gold standard for a different one. The data set that we used as our
test data, like many others have done, is especially problematic. It cannot be
used as a distance measure, because it isn’t clearly defined. Every person who
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contributed to the test values has his own understanding of word relatedness
and only 353 word pairs were rated, so those values are far more imprecise than
any computational distance function. Moreover, the criteria of the word pair
selection are crucial but unclear.

Whether an application can benefit from the advantages of a certain method,
depends on the notion of similarity or relatedness that is appropriate for its aim
and context. The method we followed throughout this work measures how often
two words appear together in the same web document. Its notion of ”similarity”
further depends on the indexing algorithms of the search engine. Our page count
distance measure would be very useful for the utilized retrieval system itself, to
expand results, suggest similar documents, suggest query words, cluster results,
browse through the data base and the like. But other applications might find
this measure of relatedness interesting as well.
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