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Abstract. This seminar paper introduces subcluster visualization as an
increasingly important topic in knowledge discovery research. Two recent
approaches are discussed in detail: The Heidi Matrix presented by [3] and
the Morpheus System as introduced in [1], [2]. In the end, the capabilities
and limitations of these methods are revealed and general difficulties of
visualizing subclusterings for highdimensional data are concluded.

1 Introduction

Nowadays, we must always assume that data for knowledge discovery might be
high dimensional:

– Abstract data has lots of potential features (native and derived).
– Since memory is cheap, saving all possible features doesn’t hurt.
– Feature selection by some predefined relevance criteria would decrease the

probability of discovering unexpected patterns.

Clustering and cluster visualization are general knowledge discovery techniques
that may be applied to any kind of data. Therefore they must comprehend the
phenomena of high dimensional data. The challenge of clustering such data is to
detect clusters in all subspaces. Before analyzing the data, we must assume that
any pair of features is linear independent and that a data space of d features really
is a d-dimensional space which has 2d different subspaces. Like the degree of
dependence between variables cannot be derived from the marginal distributions
alone, the degree to what data points are clustered cannot be detected from single
dimension projections. Clustering the data space with all dimensions also might
fail to detect all clusters especially with high dimensional data:

– Distances become larger and increasingly similar.
– Different subspaces may have different densities.
– Subspace clusters are masked by irrelevant dimensions.
– The set of irrelevant dimensions is different for each cluster

(local feature relevance problem).
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Clustering techniques that take these characteristics into account and somehow
detect clusters in different subspaces result in a ”subspace clustering” which can
be considered as a generalization of the term ”clustering”. A subspace clustering
consists of ”subclusters”. In general different subclusters can overlap in their
data objects as well as subspace dimensions. Because of the number of possi-
ble subspaces, the visualization of subspace clusterings becomes a challenge of
extreme complexity. Not only can subclusters exist in any subspace. Relations
between subclusters like similarity, distance, data- and dimension overlap might
as well depend on the subspace. In addition, the task of analyzing a single sub-
space must be simplified. The outcome of pattern detection algorithms depends
on the basis vectors (the coordinate system) to which data vectors (data points
or -objects) relate. Theoretically there is an infinite number of base vector com-
binations for each (sub)space. Most clustering algorithms for high dimensional
data only consider bases that are a subset of the original attributes from the
data set, so that the coordinate systems of all subspaces of interest are axis-
parallel. Therefore the terms ”feature”, ”attribute” and ”dimension” are treated
like synonyms in this work and related literature. It must be noted, that no
subspace clustering algorithm can detect all subclusters, because such a simpli-
fication and other compromises must be applied. The complexity of both- the
high dimensional data and the outcome of subspace clustering algorithms makes
their visualization even more important to the purpose of knowledge discovery.
Still, only few attempts have been made to tackle this problem. Two recent ones
will be discussed in this work.

2 Heidi Matrix

The so called ”Heidi Matrix” introduced by [3] is a compact pixel oriented visu-
alization of a given clustering with emphasis on

– overall clustering structure
– structure of single clusters
– closeness of single data points within a cluster
– spatial overlap of clusters in different subspaces

A quadratic pixel matrix of size n×n displays certain relations in the data set of
n objects by color. Columns and rows have the same order which is determined in
ways that promote the recognition of patterns. Figure 1 shows a simple example
data set and a corresponding visualization. The following sections will explain
what exactly the colors mean, -how objects can be ordered, -what patterns occur
and how they can be interpreted.

2.1 Color Mapping

Pixel (i, j) is colored if and only if object j is close to object i. Otherwise pixel
(i, j) is white. That means: Objects are either close or distant. A core concept of
the Heidi Matrix is that the color of close objects reflects the set of subspaces in
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Fig. 1: 2-dimensional data set and a corresponding Heidi Matrix with knn-order

which they are close. Note that this closeness relation isn’t necessarily symmetric.
In fact, object j is close to object i in subspace S if j is one of the k nearest
neighbors of i in S. Of course there is no upper bound for the distance of ”close”
objects, but the nearest neighbor relation has proven to be appropriate for high
dimensional spaces, because it adapts to varying densities (between subspaces)
and high distances. The underlying measure is the euclidean distance.

Since there are 2d−1 possible subspaces, pixels are represented by bit vectors
of the same length - one bit for each subspace. One object has k nearest neighbors
in every subspace, so the sum of bits set to 1 over all bit vectors in a column
or row of the matrix is k(2d − 1). What is important is, that in general there

are 2(2
d−1) possible bit vectors (sets of subspaces), so only the m most frequent

combinations are colored at all. Less frequent closeness relations are not displayed
to avoid clutter. The m chosen subspace sets and their colors are depicted in a
color legend like the one shown in Figure 2.

Fig. 2: Color legend for a Heidi Matrix of 3-dimensional data

When interpreting the colors of a Heidi Matrix, several issues and limitations
should be noted:

– With high numbers of objects the effect of color blending during the process
of perception or downsampling has to be considered when interpreting colors.
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– It is not displayed how close points have a lot of common subspaces in which
they are close, because the similarity of bit vectors does not correspond to
similarity of mapped colors.

– Color mapping doesn’t consider that points being close in a certain subspace
are probably also close in its subsets and thus in all combinations of these
subsets (see Figure 2 in the paper).

2.2 Object Order

Without ordering data objects, the image wouldn’t show any patterns. So first
the objects are separated so that no object of another cluster is between two
objects of the same cluster. If noise and outliers of the given clustering are known,
they can be treated as one cluster so they wouldn’t disturb the visualization.
After grouping the objects by clusters, each group is sorted in a way that roughly
reflects object closeness within that cluster.

The Matrix in Figure 1 seems to consist of four blocks. In other words,
the object order (along rows and columns) separates both clusters, so that the
matrix shows one block for each combination of two clusters the same way it
shows one pixel for each combination of two objects. Blocks on the diagonal of the
matrix visualize how objects are positioned within each cluster whereas the other
blocks show how objects of different clusters relate to each other. In Figure 1 the
blocks in the top right- and bottom left corners contain brown stripes indicating
an overlap of both clusters in this synthetic 2-dimensional data. There is no
color legend given for most matrices in the paper, but important aspects of the
examples are clear.

To be correct: The brown color of those stripes shows in which set of sub-
spaces both clusters spatially overlap. In this case that set contains just one
subspace and this subspace contains just one dimension. If we call the x- and
y-axis of the scatterplot in Figure 1 dimensions 0 and 1, than the brown color
stands for {{0}}.

It can be seen that the wider cluster on top is the the first cluster in the
order of the Heidi Matrix: The stripe covers only a subset (middle part) of its
objects, while it covers all objects of the second cluster. Now, if we imagine a
projection of all points in the scatterplot onto the ”0-axis”, we would have lots
of points from the first cluster that are distant to points from the second, while
all points from the second cluster would be close to some point of the first one.
Note that the matrix might be ”little” asymmetric in the details, but there is
no useful information in that asymmetry. In fact, the overall symmetry helps
recognizing patterns.

Ordering can be used to create different kinds of Heidi Matrices for the same
data which result in different images. These are the major modifications:

– Two different ordering algorithms were proposed: kNN order and spiral or-
der.

– Ordering can be done in a user defined subspace to display more information
about that particular subspace.
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– The advantages of different subspace specific images can be integrated to
build one composite matrix.

With spiral order the objects are sorted by their distance to the cluster center.
kNN order reflects a recursive depth first traversal of the cluster objects using
the k nearest neighbors of each object and starting at the object closest to the
origin of the data space. Figure 3 demonstrates the visual difference between
knn- and spiral order.

Fig. 3: Synthetic data containing 5 clusters and corresponding Heidi Matrices
with knn- and spiral order applied on subspace {0}

2.3 Composite Matrix

As mentioned above, it is useful to order the objects in a certain subspace rather
than over all dimensions to achieve clearer patterns for a subspace of special
interest. In the data set shown in Figure 3 cluster overlaps (1, 4) and (2, 3)
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occur in different subspaces {0} and {1}. Because the Heidi Images in the figure
are ordered in subspace {0}, overlap (1, 4) results in a clear stripe pattern, while
overlap (2, 3) is just a blurred colored block. If the ordering was done in subspace
{1} instead, overlap (2, 3) gets clearer while (1, 4) is now blurred as Figure 4
demonstrates. The authors suggest to use those ”single dimension images” which

Fig. 4: Spiral ordered Heidi Matrices over subspace {0} and subspace {1}

are ordered in only one dimension to create a composite matrix and integrate
many distinct patterns into one image. The composite matrix of both matrices in
Figure 4 can be seen in Figure 5. The resulting matrix obviously contains more
clear patterns. The authors don’t explicitly tell how the images are combined,

Fig. 5: Composite Heidi Matrix
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but it would make sense to apply bitwise AND on the bit vectors. The example
images support that assumption as well.

2.4 Problems

Because the Heidi Matrix is a compact non-interactive visualizations for a very
complex data type, a lot of simplifications and decisions had to be made. It is
a quite specific solution that hardly relies on well known visualizations, so the
interpretation of a Heidi Matrix is not intuitive and demands a lot of knowledge
about its creation. The user must understand how the ordering works to get all
the information the image carries. For high numbers of data objects, -clusters or
-dimensions Heidi Matrices become completely useless. The number of objects
and clusters is limited by screen space resolution. Even more critical is the fact
that the number of sets of subspaces is exponential in the number of dimensions
and still subspace sets are mapped to color, while the human eye cannot distin-
guish more than about 20 colors. It is also hard to read how clusters and data
objects are related to each other, because only some nearest neighbor relations
are displayed. In depth examination of cluster overlaps in certain subspaces de-
mands to create extra images for the subspaces of interest, so the user needs
prior knowledge to choose these subspaces. Also the input clusterings are lim-
ited to clusters that don’t overlap in their data. Since the whole concept relies
on the euclidean distance, it is impossible to generate a Heidi Matrix for pure
categorical data.

Even when a well defined subspace clustering is already given, the complexity
of generating a Heidi Matrix is O(2dn2). The authors claim to have created
images for 50-dimensional data in about 15 minutes. It remains doubtful how this
is possible. However, the algorithm does obviously not scale well with the number
of dimensions and is therefore not practical for processing high dimensional data
in general.

3 Morpheus System

A system for intuitive visualization and interactive exploration of subspace clus-
terings is called ”Morpheus” and was presented by [1] and [2]. These are the
major goals of that system:

– overview- and in detail presentation
– interactive exploration and parametrization
– dimensionality unbiased subspace clustering
– comparison of clusters from different subspaces
– framework for visualization of different clustering algorithms and educational

use

The following sections will discuss the Morpheus System and its characteristics
in detail.
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3.1 Overview Presentation

The Morpheus System provides views for different steps of the whole discovery
process. We will first take a look at the overview presentation of the clustering
as displayed in Figure 6.

Fig. 6: Overview presentation in the Morpheus software with bracketing for re-
dundancy parameter

The colored spheres represent the most important subclusters. To interpret
the image correctly we must know what is mapped to the visual variables:

– The closeness (position) of subclusters in screen space reflects their similarity.
– The size of a subcluster sphere corresponds to the number of data objects

contained in that subcluster.
– The color scale gives a hint about the number of dimensions of the subcluster

subspace. Red means high dimensionality.
– An interestingness measure for subclusters is double coded in the intensity

and saturation of the color.
– According to the given screenshots the z-order of subcluster spheres is prob-

ably derived from the subclusters dimensionality, because high dimensional
subclusters are displayed in front.
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The colors in the screenshots are somehow strange compared to how color map-
ping is described in the paper, because there are apparently only three distin-
guishable colors. Possibly there was some binning applied but this is not made
clear by the authors. To fully understand these mappings we must look at some
underlying measures that were developed for VISA - a visual subspace cluster
analyses technique presented in [1] on which the Morpheus System partly relies.

3.2 Basic Measures

DUSC (dimensionality unbiased subspace clustering) is actually a density based
subspace clustering algorithm. We will not discuss this algorithm but, with the
help of its measures we can understand how the distance between subclusters is
calculated by VISA and the Morpheus System. DUSC takes different densities of
subspaces into account by simply calculating the average local density of data
objects in each subspace. Therefor the neighborhood of an object (in a certain
subspace) is defined as the set of other objects that lie within a predefined radius.
The object’s density (in that subspace) is the sum of influences of all neighbors.
With higher dimensionality and greater distances the number of neighbors and
the influences become smaller. Finally, the overall average density in a subspace
is called its expected density. To make object densities comparable even between
subspaces of different dimensionality, object densities are normalized (divided)
by expected densities. An object lies in a dense region iff its normalized density
is significantly higher than 1.

3.3 Subcluster Properties

In [1] the authors proposed 3 visual analysis criteria as requirements for subclus-
ter visualizations. According to these criteria, the following subcluster properties
should be visualized:

– subspace overlap (number of common dimensions)
– data overlap (number of common objects)
– interestingness (how much average density exeeds expected density of sub-

space)

It should be noted that these arbitrary criteria are not further justified and
cannot be taken as general guidelines for subcluster visualizations. One major
problem comes with the local densities. Because densities are only calculated
where objects exist, the distribution of data over the whole data space is not
taken into account. A prominent cluster may not be declared interesting. Also
the distance used to define the object neighborhood does not adapt to different
densities of different subspaces. However, the visual analysis criteria reflect the
capabilities of the Morpheus System. Its subcluster distance function is exclu-
sively based on dimension and data overlap:

β

(
1− |Si ∩ Sj |
|Si ∪ Sj |

)
+ (1− β)

(
1− |Ci ∩ Cj |

min(|Ci|, |Cj |)

)
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This is basically a weighted sum of inverted dimension- and cluster overlap. β
is the weighting factor. Si and Sj are the subspaces of both clusters as sets
of dimensions. Ci and Cj are both clusters as sets of objects. The distance
returns a value between 0 and 1. Subclusters are positioned in screen space by
applying multi dimensional scaling on their distances. It is also possible to project
positions onto 3d space using the same method. This reduces the distortion of
distances but possibly complicates navigation. Figure 7 gives an impression of
how a 3d projection looks like.

Fig. 7: Subcluster overview projected to 3-dimensional space

From the overview presentation a user can see how the data is clustered
and identify interesting subclusters. More details about a particular subcluster
are displayed by rightclicking it. The next section will describe how information
about a subcluster is presented in the detail view.

3.4 Detail Presentation

To provide an overview over the actual data characteristic of a selected subcluster
the Morpheus System integrates a view that shows a box plot for every dimension
in the data. Figure 6 contains such a view for a 6-dimensional subcluster in a
16-dimensional data set. The dimensions of the subcluster are marked red. It
can be seen that the objects are very similar in those dimensions.

A more in depth view on the dimensionality of subclusters and subcluster
groups is visualized by a pixel matrix as shown in Figure 8. There is one row for
every object and one column for every dimension. Although, objects can belong
to several subclusters, the authors don’t explain to which subcluster an object is
assigned. It would make sense to choose the one of highest interestingness. The
color (hue) of one cell reflects the objects value in that dimension (attribute).
Saturation and brightness show the interestingness of the corresponding sub-
cluster like in the overview presentation. Because objects can belong to several
subclusters we must assume that the most interesting one is taken.
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Fig. 8: Detail view on grouped subclusters

The main feature of this pixel matrix is that objects (rows) are grouped. A
certain number of the most interesting subclusters is called anchors. Subclusters
are grouped by their nearest anchors. Groups are then ordered by the interesting-
ness of their anchors. Subclusters within a group are ordered by interestingness
as well. Even objects within subclusters are ordered by interestingness, although
no interestingness measure for single objects is defined in the paper. Groups of
interest can be zoomed out in this view.

The advantage of this pixel matrix is that the grouping and color mapping al-
lows the user to quickly detect the most interesting groups of similar subclusters
while having an overview on their actual feature values.

Rightclicking an object reveals the interestingness of the corresponding sub-
cluster, the exact values of each dimension and the dimensions belonging to the
corresponding subcluster.

3.5 Problems

The Morpheus System is not one consistent visualization, but a software tool
that involves different types of visualizations for the same data. It is not abso-
lutely clear how these different views complement one another to support one
knowledge discovery process. While the overview is suitable for high numbers of
clusters and dimensions, the pixel matrix suffers from screen space limitations.
Some marginal weaknesses may further be identified:

– The user has to decide on lots of parameters.
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– The inner structure of single clusters is only roughly displayed in the pixel
matrix view.

– The overview doesn’t reflect the whole data set but only the most prominent
clusters.

– MDS distorts distances and can lead to false interpretations.

4 Conclusion

Both presented methods for visualizing subclusterings are capable of giving a
very general overview on the clustering structure, but are very different in what
specific information is additionally presented and how this is done. The num-
ber and size of subclusters are legibly readable. The degree of spatial overlap
between subclusters (block coloring vs. MDS distance) and their dimensionality
(color legend vs. detail matrix) are somehow reflected in both visualizations. The
general advantages of the Heidi Matrix are its compactness and how well it vi-
sualizes the dimensionality of spatial overlaps. The advantages of the Morpheus
System are as follows:

– similarity of cluster subspaces as number of overlapping dimensions (MDS
distance)

– dimensionality of subclusters (detail matrix)
– real subspace clustering as input (objects can belong to several subclusters)

Both presented techniques have some limits that may be general problems visu-
alizations of subclusterings have to deal with:

– It is impossible to visualize very high numbers of subclusters, -dimensions
or -objects.

– Hierarchical subclusterings are not defined or detected.
– The complexity of analyzing all subspaces is exponential in the number of

dimensions.
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