
Distance Function δ

• let (t, d) be a joint categorical random variable over terms and docu-
ments (td-matrix)

• range of t is a set of terms T with m = |T |

• range of d is a set of documents D with n = |D|. if all documents shall
be equally important, d must be equally distributed, which demands
the sum over each column to be the same. So absolute frequencies may
not suffice...

• let’s call δ the (normalized) ”semantic diameter” of D:

0 ≤ δ(D) =
H(t)−H(t|d)

ld(n)
≤ 1

main part is: ”absolute entropy minus conditional entropy”

update: H(t)−H(t|d) is actually the ”mutual entropy” I(t; d)

... not to be confused with the ”joint entropy” H(t, d) = H(t) +H(d|t)

• if the columns of the td-matrix are already term probability vectors
v1, ..., vn (values of each vector add up to 1), we can formulate δ more
easily:

δ(v1, ..., vn) =
1

ld(n)

(
H

(
1

n

n∑
i=1

vi

)
− 1

n

n∑
i=1

H(vi)

)

note that H(v) is the entropy of one vector v = (t1, ..., tm):

H(v) = −
m∑
i=1

ti ld(ti)

main part is now: ”entropy of average minus average of entropies”
which is similar to variance: ”average square minus square of average”

• ... for n = 2 and term probability vectors v, w it gets even simpler:

δ(v, w) = H

(
v + w

2

)
− H(v) +H(w)

2

this is how the distance between 2 documents would be calculated.
it is automatically in [0...1] because we need no more than 1 bit to
distinguish 2 things.
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Properties of δ

• interpretable:

– the entropy of a term distribution roughly reflects how unspecific
that combination of terms (concepts) is....

– ”absolute entropy minus conditional entropy” reflects how much
my uncertainty about the term distribution probably decreases, if
i suddenly know, which of the n documents i have

– ”bit” seems to be the appropriate measuring unit to quantify se-
mantic distance

• may be normalized. but if we want to compare diameters of a large
and a small set (cluster) of documents, we just don’t divide by ld(n),
so we get pure values in bit

• applicable to all objects that can be represented as probability vectors

• efficient:

– in general as cheap as eucleadian distance

– agglomerative clustering is very possible: if we save n, H(t|d)
and t (as probability vector) with each set (cluster) of documents,
we can calculate the distance between arbitrary sets (clusters) in
constant time (meaning that the sizes of both sets don’t matter)

• matches intuitive notion of distance:

– it’s a metric

– term co-occurence has strong impact, meaning that distance val-
ues are smaller than those of other functions

– none saturation: more of the matching terms must lead to lower
distance, example:

u = (
1

2
,
1

2
, 0) v = (1, 0, 0) w = (

1

2
, 0,

1

2
)

obviously u and v are closer than u and w which is not the case
with eucleadian distance
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What should (could) be done with δ

• make shure no distance function like that was introduced in the litera-
ture or find that

• evaluate the effectiveness of δ itself or of clustering results on some
benchmark test data

• show mathematically, that δ is a metric (it is. but that still needs to
be proofed)

• show mathematically, that δ is in [0 ... 1]

• find mathematical formulation of properties implied by intuitive notion
of distance and compare distance functions (especially cosine distance)
with respect to these properties

• biggest challenge: develop an index structure that exploits the way δ
is defined, just like octrees exploit eucleadian distance. with insight of
the distance function and access to the feature vector, tighter bounds
can be used and the search space shrinks faster... otherwise, only index
structures for pure metric spaces can be used...

Applying δ to positioning by optimizing treemaps?

i implemented an algorithm that optimizes the order of a binary treemap/clustering
in linear time for distance preservation. in the end, close leafs (data objects)
are close to each other on the screen as well... an additional condition was
to have square shaped spaces for the objects without wasting screen space.

this might not be new at all. i just never heard of using treemap al-
gorithms for positioning hierarchical high dimensional data or of distance
preservation as a criteria for treemaps... and i like the idea/topic...
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