
Listing all Maximal Cliques

of Large Sparse Graphs

Bachelorarbeit

vorgelegt von

Sebastian Fichtner
Universität
Konstanz

Universität
Konstanz

Universität
Konstanz

Fachbereich Informatik

1. Gutachter: Prof. Dr. Ulrik Brandes
2. Gutachter: Dr. Andreas Karrenbauer

Betreuer: Prof. Dr. Ulrik Brandes

Konstanz, 2012

II

Contents

1 Introduction 1

1.1 Cliques in Graphs . 1

1.2 Complexity . 2

1.2.1 General Graphs . 2

1.2.2 Density Indicators . 3

1.2.3 Sparse Graphs . 4

1.3 Related Work . 5

1.4 About this Work . 6

2 Algorithms and Implementation 7

2.1 Bron and Kerbosch . 7

2.2 Tomita et al. 9

2.2.1 The Algorithm . 9

2.2.2 Complexity . 10

2.2.3 Variants . 12

2.3 Eppstein et al. 12

2.3.1 The Algorithm . 12

2.3.2 Complexity . 13

2.3.3 Assumptions . 14

2.3.4 Variants . 16

3 Evaluation 19

3.1 Random Graphs . 19

3.1.1 Parameters . 19

3.1.2 Generation . 22

3.2 The Testbed . 23

3.3 Results . 24

3.3.1 The Competition . 26

3.3.2 Degeneracy Order . 32

3.4 Real World Validation . 39

III

4 Conclusion 43
4.1 Summary . 43
4.2 Outlook . 44

4.2.1 Data . 44
4.2.2 Parameters . 45
4.2.3 Generalisation . 45

IV

Abstract

Listing maximal cliques is a basic task of data analysis. This bachelor thesis
investigates methods applicable to large sparse graphs. It is especially fo-
cused on the 2010 publication of Eppstein et al. [13], who improved the most
practically relevant algorithm. We discuss their approach, its predecessors
and several variants in theory and propose a modification to accelerate listing
maximal cliques of a minimal size. The algorithms are evaluated through a
systematic empirical comparison on synthetic and real graphs with regard
to clique related graph parameters. As a result, we illustrate and explain
the behavior of different algorithms on different graph types and are able to
show that our modification can be the dominating choice in practice.

V

VI

Chapter 1

Introduction

1.1 Cliques in Graphs

Graphs may be the most fundamental mathematical concept next to num-
bers. At its core, a graph is a binary relation on a set of arbitrary objects.
In graph theory, we think of it as a set of vertices (or nodes) together with a
set of edges (connections) between them.

Definition 1. G = (V,E) is a graph with vertices V = {v1...vn} and edges
E ⊆ V ×V . E is symmetric and irreflexive. The number of edges is m = |E|.
G is complete iff ∀u, v ∈ V : u 6= v ⇒ (u, v) ∈ E. G is a subgraph of graph
U iff V (G) ⊆ V (U) and E(G) ⊆ E(U).

Due to the simplicity of these elements, most real world scenarios can be
translated into an abstract graph representation. Therefore, it comes as no
surprise that a solution to a graph problem is a solution to countless related
problems in practice, even those that yet have to be discovered.

This work is dedicated to the essential class of graph problems that de-
scend from the famous CLIQUE problem, which is known to be NP-complete.
We are particularly interested in algorithms that list all maximal cliques.
Here, a clique is referred to as the vertex set of a complete subgraph of G.
It is maximal if it isn’t the proper subset of another clique. This is not to be
confused with the maximum clique, which is just a clique of maximum size,
in the sense that no other one contains more vertices.

Definition 2. U is a clique iff it is the vertex set of a complete subgraph
of G. U is a maximal clique (MC) iff U is a clique and no clique W exists
with U ⊂ W . The number of MCs of minimal size s is µs = |{U |U is a MC
∧|U | ≥ s}|. We write µ1 = µ.

1

2 CHAPTER 1. INTRODUCTION

Listing all MCs is a fundamental graph problem of general applicability.
MCs specify the largest distinct subgraphs that are perfectly dense. They
indicate local density or clusters, which makes them inevitable for basic data
analysis. Furthermore, many clique related problems can be transformed into
one another. The MCs of a graph, for instance, are equal to the maximal
independent sets of the inverse graph. An algorithm that solves one clique
problem can easily be adjusted to such different points of view, making it
applicable to the wide range of related problems that arise in practice.

Many applications attest to the practical relevance of clique detection.
A popular example is social network analysis, where such algorithms are
used to identify communities [2, 10]. Nowadays, the most prominent domain
is bioinformatics, where – by finding cliques in graphs – protein structures
are predicted [36], clustered [31, 32], searched for frequent patterns [17, 25,
24] and compared (for instance, to find docking regions) [15, 20]. Many
more applications have been reported, including document clustering [1],
approximating depth from images [21], discovering frequent item sets [40] and
solving problems of computational topology [41]. In the following section, we
will see why finding cliques is quite a challenge.

1.2 Complexity

1.2.1 General Graphs

The problem to decide whether or not a given graph contains a clique of size k
or larger is known as CLIQUE. It is one of the 21 basic decision problems that
Richard Karp in 1972 proved to be NP-complete [23]. So, unless P = NP ,
there is no polynomial algorithm that could solve it. In 1991, Feige et al.
[14] showed that the closely related maximum clique problem can not even
be approximated in polynomial time. Our focus lies on listing all maximal
cliques, which is not a decision problem and can certainly not be easier than
finding a maximum clique since every maximum clique must also be maximal.
Thus, our problem is NP-hard. And as if that wasn’t enough, we have to
recognize that just to count all MCs would take exponential time since the
maximum number of MCs is 3n/3, as Moon and Moser have shown [33]. This
maximum is realized in a so called ”Moon-Moser Graph”, in which nodes
are divided into non-connected triplets while every two nodes from different
triplets are connected. We select a MC from such a graph by picking a
node from each of the n/3 triplets, resulting in 3n/3 possible choices. To
understand why 3 of all numbers must be the size of non-connected sets, let

1.2. COMPLEXITY 3

Figure 1.1: Moon-Moser graph containig 4 triplets and 81 MCs

x be that size, and we get

arg max
x

(xn/x) = e

with ”e” being Euler’s number. The Moon-Moser graph depicted in Figure
(1.1) contains 12 nodes and, therefore, 312/3 = 81 MCs. Just for the sake of
argument, n mod 3 = 0 in typical Moon-Moser graphs. If n mod 3 = 1, the
graph would have to contain 2 non-connected pairs to maximize the number
of MCs, and one such pair if n mod 3 = 2.

1.2.2 Density Indicators

If we would not further specify the type of input graph, any algorithm would
need exponential time to list all MCs, but looking at Figure (1.1) again,
it should become clear that the real networks we want to analyze usually
don’t look anything like that. Their number of edges is said to be in O(n)
instead of O(n2), which is why they are called ”sparse”. So, in order to gain
a complexity bound of higher practical relevance, we need to consider graph
density. Its classic measure is the edge probability

p =
2m

n2 − n

Here, we understand it as the probability that two different arbitrary nodes
are connected, rather than the probability with which edges were created.
For the graph from Figure (1.1), p is about 0.82.

However, overall density does not limit the connectedness of subgraphs,
which is why degeneracy δ and arboricity α are the most widely used indi-
cators of graph density in our context. To be more accurate: They indicate
the maximum connectedness of a graph and thereby also limit its density

4 CHAPTER 1. INTRODUCTION

(Proposition 3 in [26]) while p, on the other hand, does not provide a good
limit for δ or α since edges could still be concentrated on a highly connected
subgraph. We will briefly explain both indicators in the following.

There are many ways to approach degeneracy. Eppstein and Strash [13]
give us a very compact definition:

Definition 3. The degeneracy of a graph G is the smallest number δ such
that every subgraph of G contains a vertex of degree at most δ.

For further clarification of δ, we will outline the algorithm that not only
leads to the number itself but also generates a δ-order of all nodes. Let there
be a graph. If we repeatedly remove nodes of a degree lower than k until no
such node is left, the remaining subgraph is the k-core of the original graph.
Of course, the (k + 1)-core is a subgraph of the k-core. The core number
of a node is the biggest k for which it belongs to the k-core. δ-order only
requires nodes to be sorted by their core numbers and can be computed in
linear time by repeatedly removing a node of lowest degree until the graph
is empty, while remembering the highest degree (that has occurred) as the
current minimal core number. The biggest core number that is reached is
the graph’s degeneracy δ.

Every clique of size k+ 1 is a subgraph of the k-core because right before
the algorithm removes the first node from the clique, that node has a degree
of at least k. Therefore, a graph cannot contain cliques larger than δ +
1. Another key observation about δ-order is that the number of a node’s
neighbours that may follow the node in the order is minimized and equal to
δ. In other words, there is no order that provides a lower limit to the number
of a node’s higher ranked neighbours.

Arboricity α is the minimum number of edge-disjoint forests that together
would cover all edges of the graph. We explicitly do not mean spanning
forests because those only need to cover nodes. Like δ, this number is in-
creased by highly interconnected subgraphs. Actually, both indicators are
closely related and can at most differ by a constant factor:

δ + 1

2
≤ α ≤ δ

1.2.3 Sparse Graphs

One way to get a more specific time complexity is to narrow its validity
down to a certain graph type. Planar graphs, for example, cannot have a
degeneracy greater than 5 [26]. For planar- and low arboricity graphs, the
number of cliques is in O(n), and there even exist algorithms that list all
MCs in O(n) [8].

1.3. RELATED WORK 5

A more general approach to acknowledge how the complexity of our prob-
lem depends on graph density is to use density indicators as complexity pa-
rameters. Social networks, for instance, have a low degeneracy, as shown
empirically by Eppstein and Spiro [12], which also limits maximum clique
size σ. CLIQUE is widely believed to be fixed-parameter intractable for σ,
meaning that probably no function f exists so that it could be solved in
f(σ)nO(1) [9, 16]. So, most parameterized complexity bounds that have been
found still have some exponent depend on σ or n.

So far, we have always described complexity in terms of the input size n.
It is also possible to denote it with respect to the output, thereby directly
scaling with the analyzed structural property instead of indirectly hinting
to it through fixed parameters. Output sensitive complexity is specified as
the time O(f(µ)) that the algorithm needs to find all µ MCs. Since the
maximum number of MCs decreases with decreasing density, output sensitive
complexity bounds are especially meaningful for sparse graphs. Yet another
way to declare complexity is the polynomial delay O(f(n)), which is the time
that the algorithm needs to find one MC depending on the graph size.

1.3 Related Work

The term ”clique” was introduced to our context in 1949 by Luce and Perry
[29], who analyzed social networks from the perspective of social science. In
1957, the first algorithm for listing all MCs emerged from the same area [18].

Pardalos [35], Bomze et al. [3] and Harley [19] conducted surveys on how
MC listing algorithms were further researched. We may identify two main
streams. One is based on the algorithm that Augustson and Minker intro-
duced in 1970 [1], which provides output sensitive complexity bounds. The
other one builds on the famous algorithm presented by Bron and Kerbosch
in 1973, who specified complexity in terms of the size of the input graph [6].
We will now give a brief overview on the development of both traditions.

Augustson and Minker [1] proposed the first notable approach to spec-
ify the complexity of MC enumeration. They proofed that their algorithm’s
runtime is in O(µ2). Still, it is empirically slower than many following algo-
rithms.

In 1977, a significant milestone was achieved by Tsukiyama et al. [39].
Their algorithm is quite comprehensible and has undergone many modifica-
tions by other authors. It is based on the the vertex sequence method of
Augustson and Minker but is also inspired by Bron and Kerbosch. Its worst
case time is in O(nmµ), worst case storage in O(n+m) and polynomial delay
in O(nm).

6 CHAPTER 1. INTRODUCTION

Most other output sensitive algorithms have their roots in Tsukiyama
and challenge its empirical performance. Loukakis et al. [28, 27] not only
ensure lexicographic output of MCs but also claim to be even faster than
Bron-Kerbosch. Chiba and Nishizeki [8] improved the worst case time by
replacing n with α: O(amµ). Also building on Tsukiyama but using fast
matrix multiplication, Makino and Uno [30] applied the maximum degree ∆
as complexity parameter: O(∆4µ). Their algorithm has been considered to
be especially fast on sparse graphs.

Despite empirical improvements and interesting theoretic time bounds,
algorithms of the Tsukiyama tradition do not compete well against those
descending from Bron-Kerbosch. Tomita et al. clearly fortified that fact with
their landmark publication in 2006 [38]. What they proposed is still the most
widely used MC listing algorithm in practice. It is easy to implement and
empirically very fast. Later on in this work, we will explain and benchmark
Bron-Kerbosch and Tomita together with the algorithm of Eppstein et al.
[11, 13], which is a modification of Tomita. For further research on algorithms
based on Bron-Kerbosch and Tomita, we strongly suggest the comparison of
Bron-Kerbosch variants by Johnston [22] as well as the clarifying note by
Cazals and Karande [7].

1.4 About this Work

Our effort is motivated by the algorithm that Eppstein et al. recently in-
troduced and evaluated [11, 13]. Because their method, as well as its prede-
cessors, is mainly focused on theoretic aspects while no systematic empirical
study has been done that would incorporate more algorithm variants, we
want to find out how combinations of different methods compete under clean
comparable conditions. Also, this work is geared to real world graphs, which
are typically large and sparse. We imagine the algorithms being applied to
social networks, for example. Our goal is to systematically analyze how they
perform on different types of graphs and explain their behaviour. To be able
to really operationalize graph types, we generate MC related parameterized
random graphs.

The following Chapter will explain the selected algorithms, their modifi-
cations and implementation in detail. The synthetic graphs, as well as the
general framework and output of our benchmark, will be discussed in Chap-
ter 3. We conclude our work in Chapter 4, where we summarize the gained
insights, allude to constraints and give an outlook on possible future work.

Chapter 2

Algorithms and
Implementation

2.1 Bron and Kerbosch

It is crucial to understand the working principle of the Bron-Kerbosch algo-
rithm [6] because it is the foundation of all variants that we will benchmark
and discuss. To meet its importance, we will explain this algorithm in detail.
Luckily, it is really quite simple to implement. As Algorithm (1) shows, the
difficulty lies in its recursive nature rather than its definition.

Algorithm 1 Bron-Kerbosch (as outlined by Eppstein and Strash [11])

Input Variables: P , R, X
1: if P ∪X = ∅ then
2: print R
3: end if
4: for all v ∈ P do
5: Bron-Kerbosch(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

Let’s start at the beginning: The input variables are sets of nodes. R
is most important, it always contains a clique. The function call’s job is to
report all MCs that contain R. It does that in two basic steps. First, it
checks if R itself is maximal. In that case R is printed out (lines 1 - 3). Only
if R is not maximal, does the function call reach its second step (lines 4 -
8). Here, we know that there exist nodes v that are not in R but together

7

8 CHAPTER 2. ALGORITHMS AND IMPLEMENTATION

with R would form a clique R ∪ {v}. In other words, these nodes are in the
neighbourhood of our current clique: v ∈ Γ(R).

Definition 4. The neighbourhood Γ of a vertex u ∈ V (set of vertices U ⊆ V)
consists of all vertices that are connected to u (all vertices in U):

Γ(u) = {v ∈ V |(u, v) ∈ E}

Γ(U) = {v ∈ V |U ⊆ Γ(v)}

|Γ(u)| is the degree of u.

For each of the cliques R ∪ {v}, a recursive call is invoked to report all
MCs containing R∪{v}. So, with each recursion level, the size of R increases
by 1 while the number of nodes in the neighbourhood of R cannot increase
and will most likely decrease. It is important to understand that one call,
through its recursion, considers all cliques containing R and therefore really
reports all MCs that contain R.

The previous paragraph may have provoked this question: How does the
function call know which nodes are in Γ(R)? As one might have guessed
from Algorithm (1), the other two parameters provide for that since they
constitute a partition of the neighbourhood: X ∩ P = ∅ and X ∪ P = Γ(R).
Note how the neighbourhood of R is intersected with the neighbours of the
added node v for each recursive call (line 5).

What still needs to be explained is why the function call, in its second
step, only looks at the neighbours in P while P ∪X is the whole neighbour-
hood of R. Imagine, for a moment, the function call would actually consider
all nodes from the neighbourhood as possible extensions of R. On the next
recursion level, all considered cliques would contain one more node, and they
would all be different because the one added node would be different. Yet
another level deeper in the recursion tree, another node is added. On this
level, two function calls for the same clique could be executed because they
could have added the same two nodes to R if they did it in opposite orders.
To prevent MCs from being reported several times, the algorithm keeps track
of which nodes have already been added to R in previous calls higher in the
recursion tree. Only nodes in P potentially lead to new MCs. After each
invocation of a recursive call, the node v that was added to R is moved from
P to X because we know that every MC containing R∪{v} has already been
found (lines 6, 7). This way, each MC is reported exactly once.

We start the whole algorithm by calling Bron-Kerbosch(V, ∅, ∅). It means
that initially every node is a potential extension of the empty clique R, and
no node has been moved to X, yet. If we define this initial call to be on

2.2. TOMITA ET AL. 9

recursion level 0, we can easily deduct that the cliques considered on level r
are exactly the cliques of size r.

To avoid dispensable calls that would be made when the selected node
has no neighbours in P at all, we rearranged the algorithm so that it tests the
termination condition before making a recursive call. Algorithm (2) better
depicts our implementation. In spite of avoiding some recursion depth, it
does exactly the same as Algorithm (1).

Algorithm 2 Bron-Kerbosch

Input Variables: P , R, X
1: for all v ∈ P do
2: P ← P \ {v}
3: if P ∩ Γ(v) = ∅ then
4: if X ∩ Γ(v) = ∅ then
5: print R ∪ {v}
6: end if
7: else
8: Bron-Kerbosch*(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
9: end if

10: X ← X ∪ {v}
11: end for

Bron and Kerbosch proved that the worst case storage requirement of
their algorithm is O(1

2
n(n + 3)). They did not specify its time complexity.

Their experiments suggest that time consumption per MC is almost constant
– independent of the graph size. This observation was made on tiny graphs
and is disputable from today’s perspective.

2.2 Tomita et al.

2.2.1 The Algorithm

In 2006, Tomita et al. [38] added a technique to the Bron-Kerbosch algorithm
that heavily prunes the recursion tree. It is called ”Pivoting”. A function call
reduces the number of its recursive calls by letting its loop skip all neighbours
of a so called pivot node. To understand why still all MCs are being reported,
consider pivot node u and its neighbourhood Γ(u). A clique that contains
only neighbours of u cannot be maximal because we could extend it with
u. So, every MC must contain at least one node that isn’t a neighbour of u
(u isn’t a neighbour of itself). Since a recursive call for {v} ∪ R reports all

10 CHAPTER 2. ALGORITHMS AND IMPLEMENTATION

remaining MCs containing {v} ∪ R, we can skip all recursive calls in which
v would be a neighbour of u. Tomita et al. choose their pivot node so that
it has the maximum number of neighbours in P and therefore allows to skip
the maximum number of recursive calls (Algorithm 3, line 1).

Algorithm 3 Tomita2

Input Variables: P , R, X
1: choose u ∈ P ∪X so that |P ∩ Γ(u)| = maxv∈P∪X(|P ∩ Γ(v)|)
2: for all v ∈ P \ Γ(u) do
3: P ← P \ {v}
4: if P ∩ Γ(v) = ∅ then
5: if X ∩ Γ(v) = ∅ then
6: print R ∪ {v}
7: end if
8: else
9: Tomita2(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))

10: end if
11: X ← X ∪ {v}
12: end for

2.2.2 Complexity

One important contribution of Tomita et al. is that, with the help of their
pivoting strategy, they were able to proof the worst case time bound of the
algorithm to be O(3n/3). Considering the finding of Moon and Moser that
3n/3 is actually the maximum number of MCs for a graph with n vertices,
the Tomita algorithm can be said to be worst case time optimal, meaning
that for a worst case number of MCs the algorithm’s time consumption is
linear in this number.

The authors denote the time complexity of one call, without its recursive
calls but including the selection of u, to be in O(|P ∪ X|2) ([38], chapter
4, definition 3). Darren Strash, a co-author of David Eppstein in [11, 13],
indicated that the selection of u alone is in O((|P |+ |X|)|P |) [37].

To be able to proof these general time bounds, Tomita and ELS must keep
track of a dynamic graph that is passed down and adapted through recursion
to provide recursive calls with parameters X and P . Our implementation
satisfies the same worst case time bounds if we assume our neighbour tests
via hash maps to be in O(1), like they would be with an adjacency matrix.
There are several reasons why we make that assumption in the following:

2.2. TOMITA ET AL. 11

• We are dealing with sparse graphs, where the average node degree can
be considered a constant.

• Hash maps with a small, previously known maximum capacity (∆) and
small utilization (d̄ elements) are especially good at providing constant
access.

• Fast neighbour tests are further supported by another optimization.
The neighbour hash map of each node only stores those neighbours
that follow the node in storage order. When testing two nodes for
neighbourship, we use the hash map of the node with the lower index,
thereby shrinking worst case time of neighbour tests by a constant
factor.

• We intend to classify algorithms by their empirical performance in prac-
tice and are more interested in the comparability of implementation
standards and good average case complexities.

• If a practical application is time critical and, by any means, needs a
bound to its runtime, data structures can be adjusted without interfer-
ing the algorithm in principle.

One might still argue that, although a neighbour test can be considered to be
in O(1), it might still be slower by some constant factor, and that thereby the
measured runtimes may be dominated by the total number of neighbourship
tests. We consider that true and not true:

• Tomita without an adjacency matrix might be a little slower. What
is relevant, though, is that we use the best Tomita implementation
applicable to large graphs because doing so meets the precondition of
this work and is necessary to its consistency.

• The neighbourship test is the core operation about which all the loops
of the algorithm rotate. What one function call (without its recursion)
has to do is to extend clique R with all nodes v ∈ P . R is extended
with v by testing which neighbours of v are in P ∪ X. So, the total
number of tests characterizes the complexity of the algorithm, anyway.
Neighbourship tests are really the atoms of which that complexity is
constituted. The whole point of improving Bron-Kerbosch is to reduce
the number of neighbourship tests. The longer one test takes, the better
can we measure the success of different approaches.

12 CHAPTER 2. ALGORITHMS AND IMPLEMENTATION

2.2.3 Variants

Aside from the theoretical concerns discussed in the previous section, ”quadratic
pivoting” seems quite expensive, anyway. So, we further implemented two
simplifications of Tomita2:

• Tomita1 (linear pivoting) chooses u ∈ P ∪X so that
|Γ(u)| = maxv∈P∪X(|Γ(v)|) as a heuristic to maximize |P ∩ Γ(u)|.
Its runtime is in O(|P |+ |X|).

• Tomita0 (constant pivoting) chooses u ∈ P ∪X without any constraint.
Its runtime is in O(1).

Note that these variants only differ in the inner calls because, in the outer
call, Tomita2 is as cheap as Tomita0. Since all nodes are in P at the beginning
of the outer call, we just have to choose the one with the highest degree there.
We can remember that node from the initialization step, so pivoting in the
outer call is always in O(1).

It is remarkable that the authors, indeed, evaluate their algorithm em-
pirically but do not compare it to the one it is based on. We couldn’t find
empirical verification that their original pivoting strategy is actually faster
than the Bron-Kerbosch algorithm. Anyhow, the experiments of Koch [24]
indicate at least that simplified pivoting strategies are supposedly faster than
not to use pivoting at all. We hope to shed some light on the performance
issue in the evaluation chapter.

2.3 Eppstein et al.

2.3.1 The Algorithm

The latest algorithm that we analyse in this work was introduced by Eppstein,
Löffler and Strash in 2010 [11] and empirically verified in 2011 [13]. We will
simply call it ”ELS”. It is based on the fact that the order in which nodes
are processed within the initial call effects the maximum size of those sets
that are passed to the recursive calls as parameter P , thereby also setting
that limit for all recursion steps. The idea is, now, that limiting |P | would
improve performance, especially on sparse graphs, where the limit might be
brought down to O(1). We will have to give a more in-depth explanation of
the performance effects, when looking at the results in Chapter 3.

Algorithm (4) hardly looks any different from Algorithm (3). The only
modification is the introduction of a node order v1...vn, that is applied in the
outer call (lines 2, 3). A variant of the Tomita algorithm is then invoked for

2.3. EPPSTEIN ET AL. 13

Algorithm 4 ELSt

Input Variables: P , X
1: choose u ∈ P so that |Γ(u)| = maxv∈P (|Γ(v)|)
2: for i = 1→ n do
3: if vi /∈ Γ(u) then
4: P ← P \ {vi}
5: if P ∩ Γ(v) = ∅ then
6: if X ∩ Γ(v) = ∅ then
7: print R ∪ {v}
8: end if
9: else

10: Tomitat(P ∩ Γ(vi), {vi}, X ∩ Γ(vi))
11: end if
12: X ← X ∪ {vi}
13: end if
14: end for

inner calls (line 10). The important difference is really that we now control
the node order, which was previously random. In fact, the original storage
order of nodes gets shuffled for all our algorithms.

What Listing (4) does not show is how nodes are sorted during the initial-
ization step, so the crucial part of ELS happens before recursion even starts.
With δ-order, the number of a node’s higher ranked neighbours is limited by
δ, as we explained in the introduction. The algorithm exploits that property,
when it invokes recursive calls in line 10. Since all nodes in P have a higher
rank than i, the intersection P ∩ Γ(vi), which becomes parameter P within
the recursive call, cannot contain more than δ nodes.

2.3.2 Complexity

Similar to the theoretic contribution of Tomita et al., the modification Epp-
stein and Strash introduced allowed them to proof a tighter worst case time
bound, which is O(δn3δ/3), thereby revealing that listing al maximal cliques
is fixed parameter tractable for parameter δ. They consider it the ”near-
optimal worst case time bound for graphs with low degeneracy” [13] and also
show that for degeneracy δ, the maximum number of MCs is (n− δ)3δ/3.

The ELS algorithm, as presented by Eppstein et al. [13], uses a dynamic
graph data structure HP,X to represent subproblems and relevant adjacen-
cies for pivoting. We will now briefly compare our implementation of ELS2

against the one of Eppstein et al., with regard to how the complexities of

14 CHAPTER 2. ALGORITHMS AND IMPLEMENTATION

outer- and inner call depend on function arguments and other parameters.
Note that ∆ is the maximum degree.

Eppstein et al. our implementation
outer call O(nδ∆) O(n∆)
inner call O(|P |2(|P |+ |X|)) O(|P |(|P |+ |X|))

In the outer call, Eppstein et al. go through all n vertices vi. For each
vi, they need time δ∆ to build the dynamic graph that provides the inter-
sections to recursive calls. See Lemma (3) in [11], where their specification
O(|P |+ |X|) translates to O(|Γ(vi)|) in our context. The complexity of their
inner call is denoted in Lemma (4).

In our implementation of ELS2, the outer call also goes through all n
vertices vi, but for each vi we only have to check whether its up to ∆ neigh-
bours wj ∈ Γ(vi) are in X. In the outer call, this membership test is in O(1)
because wj ∈ X ⇐⇒ j < i, with the index being the node’s position in pro-
cessing order. In our inner call, we check for each v ∈ P , which neighbours
w ∈ P ∪X of the current clique are also neighbours of v. We, however, don’t
need to iterate through the neighbours of v.

As we reasoned in the section about the Tomita algorithm, our pivoting
is also in O(|P |(|P |+ |X|)), but with δ-order, that reasoning can be fortified
even more. We mentioned that neighbour hash maps store only higher ranked
neighbours. To check whether two nodes are connected, we only need to
request the node w with the higher rank from the neighbour hash map of
the other node v. Now that v can at most have δ neighbours following it in
the order, the limit for the hash map size drops from ∆ to δ, which is a huge
improvement. To do better than that, you need to use an adjacency matrix,
which Eppstein et al. don’t. ∆ is usually much bigger than δ. Even in sparse
graphs, there can be a central node whose degree is in O(n). Setting δ as the
maximum capacity for those Java hash maps may further save main memory.

2.3.3 Assumptions

The δ-order concept is useful to theoretically prove certain complexity bounds
with respect to δ, but still, we need to find out how it compares to other
algorithms in practice, partly because Eppstein et al. build on some explicit
and implicit assumptions we may not want to adopt completely. We will now
discuss two of them and how they were translated into our implementation.

2.3. EPPSTEIN ET AL. 15

Assumption 1: Tomita needs O(n2) storage space

The authors proclaim it as their goal to ”rival the speed of Tomita while
having linear storage cost”. But what if Tomita can already do that in
our context? On one hand, they assume that the Tomita algorithm needs
quadratic storage space because it relies on an adjacency matrix. On the
other hand, they implemented a version of Tomita that makes use of adja-
cency lists. They state that this ”simple” version would be slower because
it cannot test the adjacency of two nodes in constant time. Obviously, they
don’t consider adjacency hash maps as an addition and by not doing so con-
fine the fairness of the empirical comparison with Tomita. Even so, for nearly
half of the real world graphs on which Eppstein and Strash measure runtimes,
at least one version of Tomita is faster than both versions of ELS. They could
not run the matrix variant of Tomita at all on the 13 largest graphs of their
real world data set. Since we aim for such large networks, whose adjacency
matrices might not fit into main memory, our implementation only uses data
structures that enable linear space complexity.

Assumption 2: When δ-order is applied in the outer call, no pivot-
ing can be done there

What Eppstein et al. propose to do in the outer call is nothing else than the
Bron-Kerbosch algorithm with a specified node order. They explicitly avoid
pivoting there without giving a reason for that. Actually, pivoting would
have the lowest cost and strongest effect there because choosing the pivot
node is in O(1), and we are on the highest level of recursion. To discard
pivoting on this level, causes problems for the evaluation as well because
the comparison between Tomita and ELS can only reveal the potential of
δ-order if it comes as an addition to- instead of a replacement of pivoting,
especially when the implementation of Tomita might be slower than plain
old Bron-Kerbosch in some cases.

The authors may have prevented pivoting in the outer call for the follow-
ing reason: If we skip some nodes, when processing all of them in δ-order,
the skipped ones must remain in P , making it impossible to decide on a
node’s membership in P or X based on its δ-order position. Building the
intersections (Algorithm (4), line 10) would be slower by a constant factor
and involve something like a hash map for X. This argument, however,
would apply to the Tomita algorithm as well because there the nodes are
also processed in some order, even though that order may not be specified.

It remains unclear why Eppstein et al. substantially altered the Tomita
algorithm, but we found that the benefits of outer call and pivoting don’t ex-

16 CHAPTER 2. ALGORITHMS AND IMPLEMENTATION

clude each other, anyway. Our implementation makes a distinction between
degeneracy- and processing order. In processing order, the neighbours of the
pivot node (here: node of highest degree) are ranked higher than all others
to reflect that they are neither processed nor moved to X. Based on that
order, we can still test in constant time whether a neighbour of v is in X.
To apply pivoting, we have to test for all |P | nodes whether they belong to
the O(∆) pivot neighbours (Algorithm (4), line 3). When a neighbour of
the pivot node is skipped in δ-order, it just gets pushed to the end of the
processing order, thereby avoiding any additional hashing or complexity.

2.3.4 Variants

Persistent δ-Order

Although Eppstein et al. state that δ-order in the outer call can have a
positive effect, the authors do not demand to keep it for all inner calls.
This would even come very cheap. We just have to order all adjacency lists
one time before we start, and δ-order can be kept throughout recursion. In
our initial experiments, we compared δ-order against reversed δ-order for
those lists, in terms of runtime and loop iterations. We found that it might
make a small but significant difference to the performance. That is why
we also included ELS variants in the benchmark that order their adjacency
lists as an addition. All other algorithms shuffle their neighbour lists during
initialization to ensure these lists are not ordered in any systematic manner.

We already optimized pivoting a little. A node cannot have more neigh-
bors in P than its degree. When the maximum number of neighbors in P
that has already been found is bigger than the degree of the current node,
that node is skipped. This is especially effective for quadratic pivoting, where
we avoid counting the current node’s neighbours in P .

Now, the neighbour sorting algorithms have their pivoting improved even
more. For linear and quadratic pivoting, we additionally demand to go
through P and X backwards, when iterating through the whole neighbour-
hood P ∪X of the current clique. Nodes with higher core numbers tend to
have higher degrees. Going from higher to lower degrees leads to more nodes
being skipped.

Be aware that, while we can keep X and P ordered for inner calls, X
does not necessarily precede P as it does in the processing order of the outer
call. This is a consequence of pivoting. We would have to apply the same
strategy as in the outer call, but it isn’t worth the effort because |P | in the
inner calls is limited by δ and quickly shrinks with recursion depth.

Since the nodes skipped by pivoting tend to be a minority among all nodes

2.3. EPPSTEIN ET AL. 17

in P , and the pivot node and its neighbours tend to have higher degrees, the
nodes in X still tend to precede the nodes in P . That is why we start with
P , when searching for the pivot node.

The most important optimizations then happen, when iterating through
X. As soon as the current node precedes the first node of P , we know that all
remaining nodes precede P as well because we iterate through X in reverse
δ-order. From that node on, we apply a modified iteration:

• We request the degree of the current node from the hash map which
stores only following neighbours because only those can be in P . This
leads to more nodes being skipped.

• When a better pivot node is found that has at least δ neighbours in P ,
iteration stops because the nodes preceding P cannot surpass δ.

Remember Tomita0, where pivoting is done in O(1) by choosing an ar-
bitrary node from P ∪ X. What we really want is a pivot node with many
neighbours in P . Since P is now in δ-order, we know that the first node in
P cannot have more than δ neighbours in P . The last one might be a much
better pick because it can have |P | − 1 neighbours in P .

Minimal Size

In practical scenarios, we often don’t care about the vast amount of small
MCs. Instead, we are interested in the largest ones or those that we consider
significant. With degeneracy order, it might be possible to speed up the
algorithm if we only wanted to find MCs of a minimal size k. Lets call this
modification ”k-ELS”.

All vertices in a MC of size k have core numbers of at least k−1. After we
have generated the degeneracy order, nodes are sorted by their core number,
and through the buckets we have constant access to the position of the first
node that has at least core number k − 1. We would still find all MCs if we
started the loop of the outer call at that position because all previous nodes
have core numbers lower than k− 1 and thus cannot be in a MC of minimal
size k.

To fully exploit this idea, it is important that all nodes preceding the
start position are actually in X, when the outer call starts its loop because
we don’t need to consider them in recursive steps either. So, we don’t put
any of these nodes to an unreachable rank in our processing order. Only
nodes at our start position and beyond may still be skipped by pivoting and,
therefore, be saved from ending up in X. Note that we cannot do something

18 CHAPTER 2. ALGORITHMS AND IMPLEMENTATION

like using two pivot nodes in the same function call whereas pivoting and
this optimization for minimal size k do not constrain each other.

Now, when starting the outer call, P doesn’t contain all nodes of the
graph anymore, so we cannot choose the best pivot node in constant time.
Instead, P contains all nodes from the start position to the end, which makes
the optimizatons explained in the previous section about persistent δ-order
even more effective here. Of course, all of them are applied to the outer call
of our k-ELS implementation.

We will evaluate the possible performance gain through a separate com-
parison against regular ELS in Chapter 3. Bron-Kerbosch and Tomita can
not take advantage of a minimal size k because they retrieve no prior knowl-
edge about the graph structure.

Chapter 3

Evaluation

3.1 Random Graphs

3.1.1 Parameters

To systematically evaluate how each algorithm performs on different types of
graphs, we need a parameter space with a small number of strongly decoupled
dimensions, in which the various types can be located. The parameters
should be decoupled in the sense that each one describes a distinct property
of the graph and is not predetermined by the others.

We choose n as our first parameter. It is the main indicator of the sheer
size of the problem. In addition to its size, we want to classify the graph’s
density. We already mentioned the most common measure of graph density,
which is the edge probability p. However, p doesn’t fit our needs because
it quadratically depends on n. In most real graphs, however, the number of
edges is rather in O(n) than in O(n2). In other words, the average number of
neighbours is more like a constant that depends on the type of graph. Think
of social networks: The average number of friends does not grow endlessly
in the way the network is expanding through new memberships. In order
to reflect this faithfully, we regard the average node degree as our second
parameter:

d̄ =
2m

n

Finally, we want to have a measure on how many MCs are in the graph
because even with predefined numbers of n and d̄, there is a high degree
of freedom left for the number of MCs. Obviously, we can’t simply use the
number of MCs per node because this number would still heavily depend on
d̄. Our measure of MC frequency has to scale with the maximum possible µ,
given n and d̄. The literature does not provide a formula for that number, but

19

20 CHAPTER 3. EVALUATION

we can deduct a tighter upper bound by assuming that there always exists a
graph that maximizes µ for the given parameters and has nearly equal node
degrees, meaning that the maximum difference between the degrees of two
nodes would be 1. We will now briefly explain why we make that assumption.

In a Moon-Moser graph, the number of edges is
(
n
2

)
−n. With m growing

beyond that, the possible number of MC shrinks again, until we can only have
one complete graph with m =

(
n
2

)
. That case can be left out of consideration

because nearly complete graphs are practically irrelevant and definitely not
sparse. We’re also less interested in the case where 2 < m ≤ n, because
there, µ can be maximized by making one ring out of m edges and m nodes,
thereby creating n MCs (counting isolated nodes as well).

Now, if m =
(
n
2

)
− n, the graph with maximized µ implies equal node

degrees of n − 3, and if m = n, all node degrees can be 2. So, even if
node degrees would temporarily move away from equal distribution, with m
shifting from one of both extremes to the other, they start and end being
equally distributed, and the deducted upper bound would still roughly scale
with the possible number of MCs, paying respect to graph density.

However, we conjecture that maximizing the number of MCs for given
n and m would, indeed, always lead to nearly equal node degrees. The
following example is just one way to approach the evidence. Two different
MCs A and B can share many nodes, but each of both has at least one node
that is not contained in the other MC. Otherwise, one would completely be
contained in the other and would, therefore, not be maximal. If A contains
one more node than B, it has two nodes v, w that are not in B. Since it
would only need one such node v to distinguish itself from B, the edges that
connect w with all other nodes in A can be considered ”waste”, with respect
to A and B because they do not contribute to the distinction of both MCs.
Even if there was a MC C of size |A| that distinguishes itself from A by
not containing w, the argument would be shifted to B and C. Another kind
of waste can result from nodes that are contained in too many MCs since
nodes in A ∩ B do not contribute to the distinction of A and B either. In
Moon-Moser Graphs, the intersection of all MCs is empty while every node
is contained in one third- and every edge in 1

9
of all MCs. It should now be

clearer that the concentration of edges always eliminates some combinatorial
freedom to constitute MCs.

Theorem 1. For n and equal node degrees d̄ = 2m/n with n < m ≤
(
n
2

)
−n,

n3d̄/3

d̄/3 + 1

is an upper bound to the number of MCs.

3.1. RANDOM GRAPHS 21

Proof. Because there are at most as many edges as in a Moon-Moser graph,
m limits the number of MCs, and d̄ limits the number of MCs per node.

1. We can assume the degree of every node to be d̄.

2. By definition, all MCs containing node v are subsets of {v} ∪ Γ(v).
From (1) and the findings of Moon and Moser follows that v can at
most be in 3d̄/3 different MCs.

3. If node v is in its maximum number of MCs, these MCs are of size
d̄/3 + 1 because the neighbours of v would constitute a Moon-Moser
graph containing d̄/3 triplets.

4. From (2) and (3) follows that the number of MCs per node is bounded
above by

3d̄/3

d̄/3 + 1
.

Consider the Moon-Moser graph of Figure (1.1) again. If we would force
every node to have 6 neighbours instead of 9, the number of MCs would
be bounded by 36 instead of 81, so the theorem really gives a better upper
bound with respect to its assumption.

Now that we can estimate the maximum number of MCs, we can nor-
malize the frequency of MCs and express it as the quantitative portion of
possible MCs that is realized in a graph:

q =
µ2(d̄/3 + 1)

n3d̄/3

Note that for this measure, we ignore MCs that only contain one isolated
node because the performance processing these artificial MCs would only
depend on n. Another reason is that it helps our graph generation algorithm
dealing with low values of d̄. Also be aware that this is not a MC probability,
by any means, because with q < 1, the graph may contain certain MCs that
it cannot contain with q = 1.

We determined the parameters of the real world graphs on which Eppstein
and Strash ran their experiments and chose a realistic interval for each of
them:

• n ∈ [500 ... 10000]

22 CHAPTER 3. EVALUATION

• d̄ ∈ [2.5 ... 11.5]

• q ∈ [0.03 ... 0.3]

These limits define our ”parameter cube”, in which we measure the perfor-
mance of all algorithm variants at regularly distributed sample points.

3.1.2 Generation

It is, of course, no big deal to generate a random graph for predefined values
of n and d̄. What makes our generation algorithm a bit trickier is the need
to additionally control the number of MCs in order to satisfy parameter q:

µ2 =
qn3d̄/3

d̄/3 + 1

The idea of our approach is to randomly assign nodes to MCs, while keeping
track of how many edges are added with each such assignment (knowing that
the added node might already be connected to some nodes in the MC). To
ensure every node is assigned to at least one MC, and every MC is assigned
at least one node, we first do exactly that: assign each node to a MC and
then one node to each empty MC. This procedure gives perfect control over
n and m but often leads to a different number of MCs than intended, so let’s
call the set of nodes that we assign to a MC a ”potential MC” (PMC).

Of course, all PMCs end up being cliques because their nodes get con-
nected, but neither are they guaranteed to become maximal, nor are they
guaranteed to become the only MCs generated. Consider both graphs of
Figure 3.1. Each PMC is enclosed by a dotted circle. In graph (a), the set
{a, b, c} constitutes an unintended additional MC whereas in graph (b), the
PMCs merge into one MC {a, b, c}, thereby producing two MCs less than
intended.

The good news about the number of PMCs is that it still influences the
number of actual MCs. The more MCs we attempt to create, the more we
get, but there is no simple formula for this relation. First of all, both other
parameters n and d̄ have a strong impact on how many MCs we get. Second,
the more MCs we want to create, the more PMCs we need for each one of
them. Our algorithm deals with these issues by iteratively converging to
the desired number of MCs, meaning that each iteration generates a graph,
counts MCs and then makes a better guess on how many PMCs are needed.
When the error decreases to 1% or lower, the graph is accepted and iteration
stops.

3.2. THE TESTBED 23

a b

c

x

yz

(a) Additional MC {a, b, c}

a b

c

(b) PMCs merge into one MC

Figure 3.1: Potential MCs (dotted circles) don’t equal the resulting MCs

In order to benchmark many parameter points in reasonable time, we
had to optimize this error minimization in several ways, but these aspects
as well as implementation details do not effect the principle or result of the
algorithm, so we don’t further elaborate on them.

3.2 The Testbed

All implementation and evaluation was done on a mid 2011 Mac Mini with
a 2.3 GHz Intel Core i5 processor and 8 GB main memory. Algorithms and
benchmark were implemented and run in the graph drawing and analysis
software Visone [5], using Java.

We benchmarked one parameter point on 3 different graphs that match
the parameter values. On each graph, all algorithms were measured. Some
algorithms execute very fast for certain parameters. Such short runtimes
have a relative high variance. In order to get reliable results, runtime must
be accumulated over many repeated executions.

As Boyer [4] explains in a web article, the optimization behaviour of the
JVM is hard to predict and can heavily interfere with benchmarking in Java.
Inspired by that article, we took some precautions, and though we had to be
careful not to elongate our benchmark runtime too much, we found that the
quality of our measurements heavily improved:

• Before the actual measurement, a warm up phase executes the algo-
rithm in a loop for at least 2 seconds and at most 20 times.

24 CHAPTER 3. EVALUATION

• The measurement phase executes the algorithm in a loop for at least 2
seconds and at most 40 times.

• To calculate the accumulated runtimes, we use the CPU time that the
current thread has spent instead of the time that has passed.

• Requesting thread time takes much longer than the standard command
to request elapsed time. We use the thread operation to calculate the
actual runtime but not for the break condition.

• Initialization times turned out to be too short to be gauged, so the
initialization step is excluded from the measurement. That helps with
the JVM as well because if only the pure algorithm is repeated in warm
up and measurement phase, the JVM can better adjust to it. Anyhow,
initialization is mainly concerned with basic data preparation which is
almost the same for all algorithms.

• Warm up- and measurement phase are preceded by advising Java to
run the garbage collector and complete outstanding finalizations.

• While benchmarking, the detected MCs are not written to any output
device like console or hard disk.

3.3 Results

Before we give the starting signal, we have to make sure Eppstein et al.
have their most promising horses in the race. Is it worth sorting adjacency
lists to keep δ-order for inner calls? That is the question we want to get
out of the way in order to prevent the plots from overcrowding. In Figures
(3.2), (3.3) and (3.4), the neighbour sorting modification is compared against
standard ELS. The labels of the standard variants (random neighbours) start
on ”r”. Note that in the diagrams of this chapter, algorithms are labeled by
abbreviations: BK = Bron-Kerbosch, Tomita2 = T2, ELS2 = E2 and so on.
All runtimes are in milliseconds. On some plots, they where even shorter than
in Figure (3.4 a). Those are not shown here because they don’t discriminate
well.

Persistent δ-order dominates the standard version by a small margin.
This is especially obvious at Figure (3.4 b), where graph size and density
are both high at all points of measurement. We found that the advantage
of persistent δ-order is even more significant on real graphs. In later com-
parisons, all ELS variants, even k-ELS, will implicitly apply the neighbour
sorting optimization, without being additionally labeled as such.

3.3. RESULTS 25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000

tim
e

n

rE2
rE1
rE0
E2
E1
E0

(a) d̄ = 11.5, q = 0.03

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000

tim
e

n

rE2
rE1
rE0
E2
E1
E0

(b) d̄ = 11.5, q = 0.3

Figure 3.2: Runtimes over n for d̄ = 11.5 and different values q

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

tim
e

average node degree

rE2
rE1
rE0
E2
E1
E0

(a) n = 10, 000, q = 0.03

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

tim
e

average node degree

rE2
rE1
rE0
E2
E1
E0

(b) n = 10, 000, q = 0.3

Figure 3.3: Runtimes over d̄ for n = 10, 000 and different values q

26 CHAPTER 3. EVALUATION

 0

 2

 4

 6

 8

 10

 0 0.06 0.12 0.18 0.24 0.3

tim
e

MC density

rE2
rE1
rE0
E2
E1
E0

(a) n = 10, 000, d̄ = 2.5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.06 0.12 0.18 0.24 0.3

tim
e

MC density

rE2
rE1
rE0
E2
E1
E0

(b) n = 10, 000, d̄ = 11.5

Figure 3.4: Runtimes over q for n = 10, 000 and different values d̄

3.3.1 The Competition

For an overview on how all the algorithms compete, we look at the plots that
correspond to the 12 edges of our parameter cube. All other possible 2D plots
would be some mixture of those. Figures (3.5), (3.6) and (3.7) illustrate time
consumption over parameters n, d̄ and q.

What immediately catches the eye is the overall outsider position of Bron-
Kerbosch. Not only is BK at times by magnitudes slower, but it is also
the algorithm to which parameter q really makes all the difference (Figure
(3.7)). For q > 0.1, BK even beats quadratic pivoting, making it best suited
for graphs in which the edges are expected to be more equally distributed,
forming many small MCs. The reason for that is simple: As we discovered
before, the size of the unpruned recursion tree corresponds to the number of
cliques in the graph. A MC of size n contains

(
n
k

)
cliques of size k. Since

the number of cliques grows so rapidly with n, a few large MCs, as induced
by low values of q, lead to a much higher number of cliques in the graph and
thereby to a much bigger recursion tree. All that being said, Bron-Kerbosch
is still dominated by other algorithms. Now, we take it out of the plots
because it stretches the scale of some of them out of proportion.

Figures (3.8), (3.9) and (3.10) enable a clearer comparison of the other
algorithms. Again, we left out some parameter combinations where runtimes
are too short. Apparently, the algorithms are all very fast. On some plots, we
can hardly see any difference between them. We have to make this very clear:

3.3. RESULTS 27

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000

tim
e

n

BK
T2
T1
T0
E2
E1
E0

(a) d̄ = 2.5, q = 0.03

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000

tim
e

n

BK
T2
T1
T0
E2
E1
E0

(b) d̄ = 2.5, q = 0.3

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000

tim
e

n

BK
T2
T1
T0
E2
E1
E0

(c) d̄ = 11.5, q = 0.03

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000

tim
e

n

BK
T2
T1
T0
E2
E1
E0

(d) d̄ = 11.5, q = 0.3

Figure 3.5: Runtimes over n for different values d̄, q

28 CHAPTER 3. EVALUATION

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12

tim
e

average node degree

BK
T2
T1
T0
E2
E1
E0

(a) n = 500, q = 0.03

 0

 0.5

 1

 1.5

 2

 2 4 6 8 10 12

tim
e

average node degree

BK
T2
T1
T0
E2
E1
E0

(b) n = 500, q = 0.3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 6 8 10 12

tim
e

average node degree

BK
T2
T1
T0
E2
E1
E0

(c) n = 10, 000, q = 0.03

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

tim
e

average node degree

BK
T2
T1
T0
E2
E1
E0

(d) n = 10, 000, q = 0.3

Figure 3.6: Runtimes over d̄ for different values n, q

3.3. RESULTS 29

 0

 2

 4

 6

 8

 10

 12

 0 0.06 0.12 0.18 0.24 0.3

tim
e

MC density

BK
T2
T1
T0
E2
E1
E0

(a) n = 500, d̄ = 2.5

 0

 5

 10

 15

 20

 0 0.06 0.12 0.18 0.24 0.3

tim
e

MC density

BK
T2
T1
T0
E2
E1
E0

(b) n = 500, d̄ = 11.5

 0

 50

 100

 150

 200

 250

 300

 0 0.06 0.12 0.18 0.24 0.3

tim
e

MC density

BK
T2
T1
T0
E2
E1
E0

(c) n = 10, 000, d̄ = 2.5

 0

 50

 100

 150

 200

 250

 300

 0 0.06 0.12 0.18 0.24 0.3

tim
e

MC density

BK
T2
T1
T0
E2
E1
E0

(d) n = 10, 000, d̄ = 11.5

Figure 3.7: Runtimes over q for different values n, d̄

30 CHAPTER 3. EVALUATION

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

tim
e

n

T2
T1
T0
E2
E1
E0

(a) d̄ = 11.5, q = 0.03

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000

tim
e

n

T2
T1
T0
E2
E1
E0

(b) d̄ = 11.5, q = 0.3

Figure 3.8: Runtimes over n for different values d̄, q

Our measurements on synthetic graphs show that the remaining algorithms
all do the trick in about the same time. The visible gradation wouldn’t be
essential in practice. Yet, there is some information hidden in the data that
may be interesting for theoretical assessment.

Comparing each ELSt against its counterpart Tomitat, we are happy to
see some definite coherence: δ-order dominates pure pivoting, at least on our
synthetic graphs. Among the ELS variants, the best pivoting strategy is the
simplest: ELSt dominates ELSt+1. For Tomita, it’s not quite the same be-
cause with increasing d̄ and low q, Tomita0 falls behind Tomita1. In general,
how the pivoting strategies relate to each other is very consistent between
Tomita and ELS, which attests further significance to our benchmark.

Another striking revelation is that for high values of d̄ and q, the pivoting
strategy is even more important than δ-order because there, the quadratic
pivoting, as originally proposed by Tomita et al., is dominated by the more
straight forward approaches, regardless of the node order. Actually, we have
already explained that. It is the same reason why Bron-Kerbosch is so slow
for low values of q. Here, q is larger. If q alone was increased, it wouldn’t
have the same effect. The number of MCs that would have to be built, using
the same amount of edges, would just about linearly increase, but since d̄ is
larger as well, the possible number of MCs rises exponentially. Therefore,
the graph must contain so much more MCs that the size of each one of them
has to shrink. Figure (3.14) also illustrates that. Thus recursion depth and
the actual number of cliques to be considered by an algorithm can drop with

3.3. RESULTS 31

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12

tim
e

average node degree

T2
T1
T0
E2
E1
E0

(a) n = 10, 000, q = 0.03

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

tim
e

average node degree

T2
T1
T0
E2
E1
E0

(b) n = 10, 000, q = 0.3

Figure 3.9: Runtimes over d̄ for different values n, q

 0

 2

 4

 6

 8

 10

 12

 0 0.06 0.12 0.18 0.24 0.3

tim
e

MC density

T2
T1
T0
E2
E1
E0

(a) n = 10, 000, d̄ = 2.5

 0

 20

 40

 60

 80

 100

 120

 0 0.06 0.12 0.18 0.24 0.3

tim
e

MC density

T2
T1
T0
E2
E1
E0

(b) n = 10, 000, d̄ = 11.5

Figure 3.10: Runtimes over q for different values n, d̄

32 CHAPTER 3. EVALUATION

d̄ and q growing. Of course, with a less complex recursion tree, pruning it
effectively becomes less important. Also consider the sag of performances
for 6 ≤ d̄ ≤ 9 in Figure (3.9 a). It is especially noticeable for quadratic
pivoting and corresponds roughly to the peak that the runtime of BK makes
in Figure (3.6). What is pure complexity to Bron-Kerbosch seems to be
handled notably well by effective pivoting.

Considering the data and algorithms that we discussed so far, ELS0 would
be the dominating choice. Of course, there is still the uncertainty left that the
topology of our graphs might not reflect the characteristics of real networks,
even with the clustering effect of q, and that this difference might account
for different performances in practice. That is why we ran some tests on real
graphs, considering their position in the graph parameter space.

3.3.2 Degeneracy Order

We already found that δ-order offers a slightly superior algorithm, but its
performance effect still needs to be explained.

Observation

Why do Eppstein and Strash, who exclusively compare ELS2 against Tomita2,
report even stronger effects of δ-order? We previously discussed some prob-
lematic assumptions they make and suspected that they might not bring their
implementation of Tomita2 to its full empirical potential. Now, we need to
discuss another aspect of that. Neither Eppstein and Strash nor Tomita
et al. themselves verify that the pivoting strategy originally published by
Tomita et al. is not only useful to proof its worst case time bound but also
faster than plain old Bron-Kerbosch in practice. Eppstein and Strash just
assume that this is the case, so they ascribe all performance gain of their al-
gorithm to the ordering they have added. Now, what if their implementation
of Tomita2 was slower than not to use pivoting at all? Then, at least part
of the benefit would result from avoiding some of the slower pivoting in the
outer call of their implementation of ELS2. Our benchmark results further
support that concern. As we can see in Figures (3.5 d), (3.6 d), (3.7 b) and
(3.7 d), Bron-Kerbosch is faster than quadratic pivoting for high values of q.

Eppstein and Strash [13] claim that

”All other theoretically-fast algorithms for sparse graphs have
been shown to be significantly slower than the algorithm of Tomita
et al. (Theoretical Computer Science, 2006) in practice,”

3.3. RESULTS 33

referring to the 2006 publication of Tomita et al. [38]. However, in this
publication Tomita et al. only compared their algorithm against 3 successors
of Tsukiyama et al. [39], which are said to be fast on sparse graphs but
according to the results, are all dominated by Tomita2. We implemented
the algorithm of Tsukiyama et al. ourselves and confirmed by our experi-
ments that it cannot even compete with Bron-Kerbosch and is, indeed, by
magnitudes slower. To do a full benchmark of the Tsukiyama algorithm in
reasonable time, would have been impossible. That is why we dropped it.
The point we want to make here is that the performance effect of δ-order is
an interesting phenomenon that demands a fair evaluation and hasn’t been
sufficiently explained, yet.

Analysis

It is, now, time to investigate how exactly δ-oder brings about its performance
gain. Eppstein et al. state that ”[...] the order in which the vertices of G
are processed by the Bron-Kerbosch algorithm is also important.” [11] and
explain the advantage of their algorithm by the fact that δ-order limits the
size of P :

”The sets P passed to each of these recursive calls will have at
most d elements in them, leading to few recursive calls within
each of these outer calls.”

They claim to reduce the number of recursive calls by processing the outer
call in δ-order:

”Below the top level of recursion we switch [...] to the pivoting
algorithm [...] to further control the number of recursive calls.”

They do not explain, however, how limiting the sizes of P reduces the sum
of all recursive calls, or why it should be faster for other reasons. While it
is a fact that pivoting actually reduces the number of calls (whatever that
may cost), the same has not been proven for this ordering strategy. The
explanation of Eppstein and Strash becomes even more baffling, when we
consider the following: One function call runs its main loop as many times
as there are nodes in P . As we previously explained, the algorithm in total
runs its main loop exactly once for every clique. Its performance should,
therefore, mainly depend on the number of cliques, which, of course, doesn’t
care about node order. When we look at Algorithm (2), we notice that not
every loop (clique) results in a recursive call. To quickly estimate that effect,
we actually let the algorithm count the number of all recursive calls for δ-
order, different random orders and reversed δ-order (without any pivoting)
and made two main observations:

34 CHAPTER 3. EVALUATION

1. Node order has a relatively small effect on the number of all calls.

2. Within this small range, δ-order seems to maximize the number of calls
while reversed δ-order seems to minimize it, meaning that no random
order exceeded these limits.

Note that when discussing the mechanisms of δ-order, we always think of
it as applied to the Bron-Kerbosch algorithm instead of Tomita, so pivoting
doesn’t interfere.

The second observation comes as a bit of a surprise. To understand it,
we have to imagine how the recursion tree looks like. Consider the graph of
Figure (3.11):

A

D

B C

Figure 3.11: Example graph with δ = 2

Figures (3.12) and (3.13) show standard (or random) and degeneracy
orientation of the nodes together with the corresponding recursion trees of
the algorithm. The trees are, of course, pictured as ordered. With the initial
function call being the root on level 0, recursion nodes on level r represent
the cliques of size r. For every clique in the graph, there is one node in
the recursion tree. Leafs (grey) represent cliques that are considered by the
algorithm but do not result in recursive calls while inner nodes represent
cliques that actually invoke calls. So, the number of recursion nodes on each
level is constant for the graph and independent of the node order.

An empty set R is passed to the initial call on level 0. In other words, by
starting the algorithm, we ”consider” the empty clique. Therefore, the root
box in Figures (3.12) and (3.13) is empty. The set P that is passed to the
initial call contains all n = 4 nodes of the graph, which is reflected by the
children of the root. Inside the initial function call on level 1, the nodes in P
are looped in order to consider all cliques of size 1. Here, δ-order comes into
play by limiting the sizes of the sets P that are passed to level 2, which limits
the number of children that nodes on level 1 can have. In our simple example,
the numbers are not actually limited but still less concentrated because in
Figure (3.13) only one recursion node on level 1 has two children.

3.3. RESULTS 35

A B C D

A B C D

A, B A, D B, C B, D

A, B, D

Figure 3.12: Standard orientation and corresponding recursion tree

A BC D

C A D B

C, B A, B A, D D, B

A, B, D

Figure 3.13: Degeneracy orientation and corresponding recursion tree

36 CHAPTER 3. EVALUATION

However, the sum of those sizes must be m = 4 because there are always
m cliques of size 2 to be considered on level 2. Hence, with δ-order, the m
loop iterations on level 2 are distributed to more different function calls, or
in other words, the recursion nodes on level 2 have more different parents on
level 1. The recursion tree has the same number of nodes but lesser leafs.

So, if δ-order increases the number of recursive calls, where does the
performance gain come from? Remember that, in the implementation by
Eppstein and Strash, the processing of one inner call without its recursive
calls is in O(|P |2(|P | + |X|)). From the cubic dependence on |P |, we can
easily deduct that performance must improve if we distribute our constant
work load of m recursion nodes on level 2 more equally to more recursive
calls invoked from level 1. In our implementation, one such call is only in
O(|P |(|P |+ |X|)), so we benefit less from δ-order. The reason that Eppstein
and Strash found their algorithm to be especially useful on sparse graphs is
that there, the number of recursion nodes on layer 1 accounts for a greater
portion of all nodes in the recursion tree.

Let’s look at our example again and assume that one call without its
recursive calls would need exactly time |P |2. Applying standard order (Figure
(3.12)), the algorithm would need 42 + 22 + 22 + 12 = 25 time units in total
whereas with degeneracy order (Figure (3.13)), it would need 42 + 12 + 22 +
12 + 12 = 23.

Minimal Size

If we wanted to include the minimal size strategy in our benchmark, the
question would be how to decide on k at each parameter point. The number
of MCs matching that minimum depends heavily on the graph parameters,
and when a graph contains no such MCs at all, a comparison might be
considered unfair and irrelevant. Furthermore, it would be interesting how
exactly performance depends on k, so we made a separate evaluation at the 4
corners of the parameter cube where n = 10, 000. Because the main influence
of n is that it linearly increases runtimes, the other 4 corners, where n = 500,
don’t reveal much more and are omitted here.

To put the measurements in perspective, we still need to have an idea of
how many MCs exist for each size k. Figure (3.14) illustrates distributions
of MC sizes for the examined graphs. Remember that all presented numbers
that relate to a benchmarked synthetic graph are actually averages over 3
graphs measured at that parameter point. This applies to the frequencies in
Figure (3.14) as well.

3.3. RESULTS 37

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16

tim
e

min size k(a) d̄ = 2.5, q = 0.03

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2 4 6 8 10 12 14 16
tim

e
min size k(b) d̄ = 2.5, q = 0.3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 4 6 8 10 12 14 16

tim
e

min size k(c) d̄ = 11.5, q = 0.03

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 2 4 6 8 10 12 14 16

tim
e

min size k(d) d̄ = 11.5, q = 0.3

Figure 3.14: Histograms over MC size k for different values d̄, q

The actual performances in dependence on k are shown in Figure (3.15),
where k-ELSt is labaled kEt. For d̄ = 11.5 and q = 0.03, as displayed
in diagram (c), k-ELS0 is 4% slower than ELS0 at listing all 4156 MCs.
However, if we are satisfied with the 61 MCs of minimal size 11, k-ELS0 is
91% faster than ELS0. This effect is clearly significant for lower values of q
or d̄. Only diagram (d), where both parameters are high, shows a different
picture.

38 CHAPTER 3. EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16

tim
e

min size k

E2
E1
E0

kE2
kE1
kE0

(a) d̄ = 2.5, q = 0.03

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16

tim
e

min size k

E2
E1
E0

kE2
kE1
kE0

(b) d̄ = 2.5, q = 0.3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16

tim
e

min size k

E2
E1
E0

kE2
kE1
kE0

(c) d̄ = 11.5, q = 0.03

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16

tim
e

min size k

E2
E1
E0

kE2
kE1
kE0

(d) d̄ = 11.5, q = 0.3

Figure 3.15: Runtimes over minimal MC size k for n = 10, 000 and different
values d̄, q

The thing about density in random graphs is that with increasing d̄, the
core numbers of the nodes rise while the sizes of the MCs cannot keep up. If
MCs are formed randomly, their frequency drops dramatically with their size,
and we get many small MCs (Figure (3.14)). So, for most nodes, the size of
the biggest MC that they belong to is much smaller than their core number.
Thus, the algorithm cannot skip many nodes in the outer call because their
core numbers rise too quickly at too early positions in δ-order.

3.4. REAL WORLD VALIDATION 39

Even more important is q. If we decrease q, we get a less ”random” graph
that is more clustered and contains lesser but larger MCs. Now, if d̄ and q
both are high, that is really the worst case for our minimal size strategy but
still the only scenario where that strategy appears to be worthless. Consider-
ing that real world graphs are most likely sparse and structured, we conclude
that through our modification, the approach of Eppstein et al. makes an
essential difference in practical applications.

3.4 Real World Validation

To validate our observations on real world data, we took 6 graphs from Mark
Newman’s data set [34]. Three of them were used by Eppstein and Strash as
well [13]. Since Bron-Kerbosch is overwhelmingly dominated on all of them,
we had to leave it out of the plots. In order get an idea of what potential
the k-ELS variants have on real data, we chose a k for each graph such that
at least 100 MCs were reported. Figures (3.16) and (3.17) show the results.
Here are some general observations:

• ELSt still dominates Tomitat.

• ELS0 is still an optimal general choice for listing all MCs.

• k-ELSt still dominates ELSt. The speed potential of k-ELS is still huge.

• Constant pivoting is less competitive on real graphs. In two cases, it is
even much worse than quadratic pivoting.

• δ-order is more competitive on real graphs, especially on the internet
graph, which has many MCs, regarding its sparsity.

• The performance patterns of all 3 Condensed Matter Collaboration
graphs are very similar, which supports the significance of the presented
numbers.

Because ELSt is actually the same as 2-ELSt, choosing an algorithm for the
real graphs would be easy: k-ELS0 with k set to our needs would be a very
viable option. It may be an optimal k-ELS variant on these graphs and
also dominates the synthetic benchmark. Since our experiments on random
graphs are much more extensive and systematic, they still provide more re-
liable orientation.

40 CHAPTER 3. EVALUATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

T2 T1 T0 E2 E1 E0 kE2 kE1 kE0

tim
e

min size k(a) hep-th: d̄ = 3.8, q = 0.41

 0

 100

 200

 300

 400

 500

 600

 700

 800

T2 T1 T0 E2 E1 E0 kE2 kE1 kE0

tim
e

min size k(b) internet: d̄ = 4.2, q = 0.88

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

T2 T1 T0 E2 E1 E0 kE2 kE1 kE0

tim
e

min size k(c) astro-ph: d̄ = 14.5, q = 0.026

Figure 3.16: Runtimes on different (social) networks from Mark Newman’s
data set [34]

The internet- and the astro graph reveal some unexpected behaviour of
our algorithms that needs to be mentioned. Both are positioned outside the
parameter cube that we defined for our random graphs.

On the internet graph, q = 0.88 is much higher than on our random
graphs while d̄ is quite low. We might think that most of the many MCs
must be very small. This is true to some degree, but still, 6.4% of all MCs are
of minimal size 10, and the two maximum cliques are of size 17. The reason
for this is a fundamental difference between our random- and real graphs.

3.4. REAL WORLD VALIDATION 41

 0

 10

 20

 30

 40

 50

 60

 70

T2 T1 T0 E2 E1 E0 kE2 kE1 kE0

tim
e

min size k(a) 1999: d̄ = 5.7, q = 0.23

 0

 50

 100

 150

 200

 250

 300

T2 T1 T0 E2 E1 E0 kE2 kE1 kE0
tim

e

min size k(b) 2003: d̄ = 7.7, q = 0.158

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

T2 T1 T0 E2 E1 E0 kE2 kE1 kE0

tim
e

min size k(c) 2005: d̄ = 8.7, q = 0.134

Figure 3.17: Runtimes on the Condensed Matter Collaboration coauthorship
networks from Mark Newman’s data set [34]

Although, a high value of q might suggest the graph’s MCs are small, their
high number can only result from MCs sharing more edges. Just remember
the Moon-Moser graphs, where no MC has even one exclusive edge to its
own. That is a major difference in the way the graph could be generated.
To reach such a high value of q, a generation process would have to use the
available edges very systematically, at least in some parts of the graph. In
real graphs, these regions emerge naturally. With MC sizes rising again for
that purpose, complexity and the need to prune the recursion tree do so

42 CHAPTER 3. EVALUATION

as well, which explains why – in spite of its sparsity – effective (quadratic)
pivoting suddenly dominates fast pivoting on the internet graph.

At the same time, sparsity and high q still lead to flat recursion and
edges being more evenly distributed for most parts of the graph. 62% of
all reported MCs are exactly of size 2, meaning that the recursion nodes
on level 1 account for a very large portion of all recursion nodes. As we
explained, when analyzing results of the synthetic benchmark, δ-order is
especially useful under such conditions. That is why the otherwise small
advantage of δ-order turns out to be a crucial property of Bron-Kerbosch
based algorithms on sparse graphs with a very large q.

On the astro-ph graph, constant pivoting encounters problems previ-
ously unseen. The experiments on random graphs already suggested, that
constant- falls behind linear pivoting for higher density and small q, as Fig-
ure (3.9 a) demonstrates. Here, both values are even out of the parameter
cube, which is why Tomita0 falls way behind even Tomita2. Be aware that
this does not significantly effect the ELS variants.

Chapter 4

Conclusion

4.1 Summary

Listing all MCs is a common task in all sorts of application domains. While
it is a very complex problem theoretically, Tsukiyama et al. [39] and Bron
and Kerbosch [6] published algorithms that solve it in reasonable time on
small graphs. Both are dominated by the Tomita algorithm of 2006 [38],
which is much faster on complex graphs. Eppstein et al. [11] improved
the Tomita algorithm theoretically and empirically. Our modification k-ELS
further exploits the minimal MC size k, that is given to the algorithm, and
is several times faster, depending on k. In the sense that it cannot be slower
than the pure ELS algorithm, and k can be set to 2, k-ELS0 can be the
dominating choice in practice.

It may occur that the complexity of listing all MCs of a certain graph
is unknown, and running 2-ELS might take too long. In this case, we rec-
ommend to run k-ELS for a presumably high value of k to estimate graph
structure, MC frequency and algorithm runtime. If no MC of size k or larger
exists in the graph, the algorithm would just generate the δ-order, which is
done in O(n), and return. When we first were measuring initialization time
separately, we recognized that even including δ-order generation, it takes an
unmeasurable small fraction of the whole runtime. So, when k is chosen too
high, it can be decreased iteratively until the algorithm reports some of the
largest MCs of the graph.

When implementation effort is an issue, one should start with the Bron-
Kerbosch algorithm, which is really easy to implement and also dominating
the Tsukiyama algorithm empirically. All its discussed improvements can be
added incrementally, with difficulty and the need to care for small details
growing.

43

44 CHAPTER 4. CONCLUSION

Often, papers do not provide enough evidence for practical decisions and
explain the effects of their algorithms insufficiently. So, apart from analyz-
ing performances, we also presented valuable insights into the nature of the
problem and the inner workings of the algorithms, thereby empowering the
reader to adjust them to his needs.

4.2 Outlook

4.2.1 Data

We would like to run benchmarks on even larger synthetic graphs for two
reasons:

1. We observed that comparative measurements are more discriminating
on large dense graphs with large MCs, where runtimes are longer. In
fact, after all optimizations were applied, a lot of clarity had vanished
from our plots because runtimes got very short.

2. The size of real world graphs knows no limit. Benchmarks should be
as close to reality as possible.

Now, to come up to that, we have to overcome two problems:

1. Java limits our accessible main memory.

2. With more vertices, time- and memory demand of graph generation
would explode while the size of the parameter cube that the generation
algorithm can cover would be quite limited.

The first problem can easily be solved by translating our implementation
to a language like C++, that gives us better control over memory usage.
That would also avoid the uncertainties induced by the JVM’s background
activities. To tackle the second problem, we would need to adjust or rethink
our graph generation approach.

Extending the real world validation might also reveal some new aspects.
The graphs we used are the ones on which runtimes are neither too short
nor too long to be be benchmarked. They were not selected for any special
reason. Many real graphs, however, did not make it into the benchmark due
to a variety of minor technical problems. Running algorithms on all sorts of
real graphs would be a major priority of developing a stable, flexible and fast
benchmarking system.

4.2. OUTLOOK 45

4.2.2 Parameters

As we developed our MC related graph parameters, we stumbled upon an
interesting question: Given n and m, how many MCs can the graph contain
at most? As simple as the question sounds, it seems to be non-trivial and
unanswered. We reasonably estimated the maximum through a specific upper
bound, but if the conjecture we presented was true, that upper bound would
hold in general. To prove or disprove the conjecture would not only add
to the informative value of our work but also be a significant contribution
by itself. We already know that the specific bound, as given by Theorem
(1), can actually be reached because it can easily be shown that q = 1 for
Moon-Moser graphs. Now, the crucial step towards proving or disproving
the conjecture would be to find out whether q = 1 is always realizable for
n < m <

(
n
2

)
− n. There are two possible outcomes:

• No, it is not. We can probably show where the real maximum lies.

• Yes, it is. If the conjecture is false, a graph with q > 1 exists as
a counter example. Else, Theorem (1) provides the precise general
maximum.

Despite this question about the number of MCs, we learned in the evalu-
ation that performances might depend much more on the number of cliques.
A formula for the maximum number of cliques in a connected graph with n
and d̄ might lead to another interesting parameter and generation algorithm.
Also, it might be desirable to systematically asses the interdependence be-
tween all possible parameters – those of the graphs and those of the algo-
rithms. Algorithm parameters could be: empirical performance, number of
neighbour tests, loop iterations, recursion depth and the like. Correlations
between parameters could be computed statistically over many graphs or be
deducted theoretically. If we knew, for example, that performance corre-
lates very strongly with the number of neighbour tests, we could compare
algorithms much more accurate and flexible based on these tests.

4.2.3 Generalisation

Now that we know which algorithms are very fast in practice, we may want
to address a practical applicability problem: Because the definition of MCs
is very strict, large MCs are very rare and clique sizes very limited. In a
purely random graph, no clique of size k exists at all with probability

P (”No clique of size k exists”) = Pk =
(

1− p(
k
2)
)(n

k)

46 CHAPTER 4. CONCLUSION

Figure 4.1: Random graph with d̄ = 9.9 and 3 maximum cliques of size 4

Also consider this simple fact: A graph contains a MC of minimal size k if
and only if it contains a clique of size k.

Now, let’s illustrate the meaning of all that by a small example: Let there
be a graph with n = 100 and d̄ = 9.9, then p = 0.1, and we get two revealing
probabilities P4 = 0.0189 and P5 = 0.9925, which tell us that the largest
cliques are almost certainly of size 4. Figure (4.1) displays a graph that is
typical for the example. It contains 495 edges, and its 3 maximum cliques
are of size 4. Smaller MCs, however, are very frequent: We count 149 of size
3 and 180 of size 2.

Real graphs are not perfectly random, but the frequency of their MCs still
drops exponentially with increasing minimal size k. That is why MCs often
don’t provide sufficient information for clustering related tasks. It gets even
worse, when the graph has a systematic peculiarity like having no triangles.
There, the discussed algorithms would be completely useless because they
would just list all edges as MCs of size 2 while the graph may actually have
an interesting density structure.

4.2. OUTLOOK 47

It would be exciting to investigate how the algorithms could be adjusted to
more general MC definitions (dense regions) or to weighted graphs. Possibly,
MCs can even be utilized for hierarchical graph clustering and visualization
by repeatedly collapsing them into pseudo vertices. In data analysis tasks,
we also have the issue that MCs might heavily overlap and have to be filtered
or consolidated. Many paths lead on from here, yet it isn’t the purpose of
this work to go any further.

48 CHAPTER 4. CONCLUSION

Bibliography

[1] J. G. Augustson and J. Minker. An analysis of some graph theoretical
cluster techniques. J. ACM, 17:571–588, 1970.

[2] N. Berry, T. Ko, T. Moy, J. Smrck, J. Turnely, and B. Wu. Emergent
clique formation in terorirst recruitment. In Agent Organization: Theory
and Practice Workshop. AAAI Press, 2004.

[3] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maxi-
mum clique problem. In Handbook of Combinatorial Optimization, pages
1–74. Kluwer Academic Publishers, 1999.

[4] B. Boyer. Robust java benchmarking, part 1: Issues, 2008.

[5] U. Brandes and D. Wagner. Visone – analysis and visualization of so-
cial networks. In GRAPH DRAWING SOFTWARE, pages 321–340.
Springer-Verlag, 2003.

[6] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM, 16:575–577, 1973.

[7] F. Cazals and C. Karande. A note on the problem of reporting maximal
cliques. Theoretical Computer Science, 407(1-3):564–568, 2008.

[8] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM, 14(1):210–223, 1985.

[9] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and
completeness ii: On completeness for w[1], 1995.

[10] N. Du, B. Wu, X. Pei, B. Wang, and L. Xu. Community detection
in large-scale social networks. In Proceedings of the 9th WebKDD and
1st SNA-KDD 2007 workshop on Web mining and social network analy-
sis, WebKDD/SNA-KDD ’07, pages 16–25, New York, NY, USA, 2007.
ACM.

49

50 BIBLIOGRAPHY

[11] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in
sparse graphs in near-optimal time. In ISAAC (1), pages 403–414, 2010.

[12] D. Eppstein and E. Spiro. The h-index of a graph and its application
to dynamic subgraph statistics. In F. Dehne, M. Gavrilova, J.-R. Sack,
and C. Tóth, editors, Algorithms and Data Structures, volume 5664 of
Lecture Notes in Computer Science, pages 278–289. Springer Berlin /
Heidelberg, 2009.

[13] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse
real-world graphs. In Proceedings of the 10th international conference
on Experimental algorithms, SEA’11, pages 364–375, Berlin, Heidelberg,
2011. Springer-Verlag.

[14] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approxi-
mating clique is almost np-complete. Foundations of Computer Science,
Annual IEEE Symposium on, 0:2–12, 1991.

[15] E. J. Gardiner, P. Willett, and P. J. Artymiuk. Graph-theoretic tech-
niques for macromolecular docking. Journal of Chemical Information
and Computer Sciences, pages 273–279, 2000.

[16] J. Gramm, J. Guo, and R. Niedermeier. On exact and approxima-
tion algorithms for distinguishing substring selection. In A. Lingas and
B. Nilsson, editors, Fundamentals of Computation Theory, volume 2751
of Lecture Notes in Computer Science, pages 963–971. Springer Berlin
/ Heidelberg, 2003.

[17] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett. Identi-
fication of tertiary structure resemblance in proteins using a maximal
common subgraph isomorphism algorithm. Journal of Molecular Biol-
ogy, 229(3):707 – 721, 1993.

[18] F. Harary and I. C. Ross. A procedure for clique detection using the
group matrix. Sociometry, 20(3):pp. 205–215, 1957.

[19] E. R. Harley. Comparison of clique-listing algorithms. In
MSV/AMCS’04, pages 433–438, 2004.

[20] M. Hattori, Y. Okuno, S. Goto, and M. Kanehisa. Development of a
chemical structure comparison method for integrated analysis of chemi-
cal and genomic information in the metabolic pathways. Journal of the
American Chemical Society, 125(39):11853–11865, 2003.

BIBLIOGRAPHY 51

[21] R. Horaud. Stereo correspondence through feature grouping and max-
imal cliques. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 11:1168–1180, 1989.

[22] H. C. Johnston. Cliques of a graph - variations on the bron-kerbosch
algorithm. International Journal of Parallel Programming, 5:209–238,
1976. 10.1007/BF00991836.

[23] R. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–
103. Plenum Press, 1972.

[24] I. Koch. Enumerating all connected maximal common subgraphs in two
graphs. Theoretical Computer Science, 250(1-2):1 – 30, 2001.

[25] I. Koch, T. Lengauer, and E. Wanke. An algorithm for finding maximal
common subtopologies in a set of protein structures. Journal of compu-
tational biology : a journal of computational molecular cell biology, 3(2),
1996.

[26] D. R. Lick and A. T. White. k-degenerate graphs. Canadian Journal of
Mathematics, 22:1082–1096, 1970.

[27] E. Loukakis. A new backtracking algorithm for generating the family
of maximal independent sets of a graph. Computers and Mathematics
with Applications, 9(4):583–589, 1983.

[28] E. Loukakis and C. Tsouros. A depth first search algorithm to generate
the family of maximal independent sets of a graph lexicographically.
Computing, 27:349–366, 1981. 10.1007/BF02277184.

[29] R. D. Luce and A. D. Perry. A method of matrix analysis of group
structure. Psychometrika, 14(2):95–116, 1949.

[30] K. Makino and T. Uno. New algorithms for enumerating all maximal
cliques. In Scandinavian Symposium and Workshops on Algorithm The-
ory, volume 3111 of LNCS, pages 260–272. Springer, 2004.

[31] S. Mohseni-Zadeh, P. Brézellec, and J. L. Risler. Cluster-c, an algorithm
for the large-scale clustering of protein sequences based on the extraction
of maximal cliques. Computational Biology and Chemistry, 28(3):211 –
218, 2004.

52 BIBLIOGRAPHY

[32] S. Mohseni-Zadeh, A. Louis, P. Brézellec, and J. Risler. Phytoprot: a
database of clusters of plant proteins. Nucleic Acids Res., 32(1):D351–
D353, 2004.

[33] J. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathe-
matics, 3:23–28, 1965. 10.1007/BF02760024.

[34] M. E. J. Newman. The structure of scientific collaboration networks.
Proceedings of the National Academy of Sciences of the United States of
America, 98(2):404–409, 2001.

[35] P. M. Pardalos. The maximum clique problem. 1992.

[36] R. Samudrala and J. Moult. A graph-theoretic algorithm for com-
parative modeling of protein structure. Journal of Molecular Biology,
279(1):287 – 302, 1998.

[37] D. Strash. Listing all maximal cliques in large sparse real-world graphs
(symposium on experimental algorithms), 2011.

[38] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complex-
ity for generating all maximal cliques and computational experiments.
Theoretical Computer Science, 363(1):28 – 42, 2006. Computing and
Combinatorics, 10th Annual International Conference on Computing
and Combinatorics (COCOON 2004).

[39] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algo-
rithm for generating all the maximal independent sets. SIAM Journal
on Computing, 6(3):505–517, 1977.

[40] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms
for fast discovery of association rules. Technical report, Rochester, NY,
USA, 1997.

[41] A. Zomorodian. The tidy set: A minimal simplicial set for computing
homology of clique complexes. In Proc. ACM Symposium of Computa-
tional Geometry, pages 257–266, 2010.

	Introduction
	Cliques in Graphs
	Complexity
	General Graphs
	Density Indicators
	Sparse Graphs

	Related Work
	About this Work

	Algorithms and Implementation
	Bron and Kerbosch
	Tomita et al.
	The Algorithm
	Complexity
	Variants

	Eppstein et al.
	The Algorithm
	Complexity
	Assumptions
	Variants

	Evaluation
	Random Graphs
	Parameters
	Generation

	The Testbed
	Results
	The Competition
	Degeneracy Order

	Real World Validation

	Conclusion
	Summary
	Outlook
	Data
	Parameters
	Generalisation

