
What Music Composition Interfaces Require

Master Seminar Paper
by

Sebastian Fichtner
Universität
Konstanz

Universität
Konstanz

Universität
Konstanz

Faculty of Computer- and Information Science

Prof. Dr. Harald Reiterer
Dr. Hans-Christian Jetter

Konstanz, 2014

Abstract

This master seminar paper investigates music composition as an application domain of
interaction design. We approach the subject from the viewpoints of Human-Computer In-
teraction (HCI), computer music and related fields. We summarise the design of creativity
support tools (CSTs) and briefly review basic principles of music composition. One main
result is an extensive literature survey. Another one is the identification and explanation
of 36 requirements that reflect the needs of composers and their domain. The require-
ments will serve as the foundation for further modelling, design and implementation in
the subsequent master project.

II

Contents

1 Introduction 1
1.1 HCI and Music Composition . 1
1.2 About this Master Subject . 2

1.2.1 Basic Goal and Approach . 2
1.2.2 Methodology . 3
1.2.3 Potential Contributions . 4

1.3 About this Master Seminar Paper . 5

2 Creativity as a Principle Requirement 6
2.1 A Renaissance . 6
2.2 The Challenge . 8
2.3 Frameworks for Support . 9
2.4 Requirement Themes . 11

2.4.1 Simplicity . 11
2.4.2 Exploration . 12
2.4.3 Reuse . 14
2.4.4 Abstraction . 15

3 Music Composition as an Application Domain 16
3.1 Musical Structure . 17
3.2 Composers and their Context . 18
3.3 Traditional Composition Software . 19

4 Digging for Specific Requirements 20
4.1 The Status Quo: DAWs and Linear Sequencers 21
4.2 The Innovation Strategy: DDID . 23
4.3 What We Dare to Know: Conceptual Metaphors 26
4.4 Composition in Perspective: The Big Dualism 28

4.4.1 Composition vs. Decomposition . 28
4.4.2 Cognitive Styles . 30
4.4.3 Conditions of Flow . 31

4.5 Requirements of Simplicity . 34
4.5.1 Focused Functionality . 34
4.5.2 Focused Attention . 35
4.5.3 Managing the Environment . 36
4.5.4 Managing the Tool . 37
4.5.5 Managing Physical Interaction . 37
4.5.6 Concrete Simplicity . 38

4.6 Requirements of Freedom . 39
4.6.1 Openness . 39
4.6.2 Generality . 41

4.7 Requirements of Exploration . 41
4.7.1 Reconciling Simplicity and Freedom 42

III

4.7.2 Learnability through Exploration 42
4.7.3 Meaningful Exploration . 43

4.8 Requirements of Abstraction . 43
4.8.1 The Role of Abstraction . 43
4.8.2 Voice Abstraction (VA) . 45
4.8.3 Temporal Abstraction (TA) . 47
4.8.4 Process Abstraction (PA) . 49
4.8.5 Reuse and Versioning Abstraction (RVA) 51

5 Conclusion 55

Appendices 57
A) Principles of Music Interface Research & Development 57
B) Creativity and Collaboration . 58
C) Creator Experience . 60
D) Framework for Mega-Creativity . 63
E) Design Principles for CSTs . 63
F) Basic Principles of Musical Structure . 65
G) A Taxonomy of Composition Software . 67
H) Submappings of the Architectural Metaphor 68
I) Composition vs. Instrument . 69

References 71

IV

1

1 Introduction

1.1 HCI and Music Composition

Music composition has much to tell us about ”the emerging, experience-oriented third
wave of HCI” [8] that is concerned with content production tools and creativity [2, 19, 22].

HCI research of creativity typically chooses less specific domains where the objects of
interest are simpler, more ubiquitous and more concrete like visual sketches, mind maps
and images. However, this approach misses out on what can be learned from areas like
music composition.

Here, the domain is of a conceptual nature. Its content can be formally structured,
yet it often reaches a level of complexity that can not be adequately represented and
edited with modern interactive music notation systems. Insights into this issue would be
translatable to other complex, formal or conceptual domains like software development,
architecture, scientific-/creative writing and design/construction. Principles of creativity
are quite domain-agnostic anyway [51], but music composition in particular ”provides
an excellent vehicle for developing creativity support and exploring ideas that could be
applied to other domains.” [19]

Cronin [22], in an Interactions feature article on music interfaces, went a step further,
suggesting that composers using computers ”are able to achieve a sense of fluency (or
even virtuosity) that is an ideal we should have for all kinds of users of technology, from
surgeons to stock traders.” He concluded:

”The application of these inventions to more utilitarian digital products may
not be universally obvious, but there’s a great potential to follow the lead of
musical technology.”

Computer music research has shifted its focus from technology to human factors. In 2010,
Gurevich [48] stated: ”It is only in the past five to ten years that we have been able to
say with some confidence that we largely have all the widgets and doodads we need. And
it is precisely in that time that researchers and practitioners have begun to be concerned,
in significant numbers, with issues of HCI that are specific to music creation.”

Yet, we are surprised that, although music creation is one of the basic expressions of
human creativity, even this new wave of musical HCI has, by and large, stayed away from
the exact composition process and focused instead on peripheral phenomenas like auto-
mated composition, sound design, performance and improvisation. We notice a distinct
thematic gap in the denseness of academic publications that is also reflected by the palette
of available commercial products.

Human-Computer Interaction is at the intersection between social - and computer sci-
ence(s). Both worlds intensely investigated the analysis and synthesis of sound and
musical structure, providing us with eight vast research fields as the periphery and frame-
work of HCI in the music domain. One is, for instance, the field of psychoacoustics, which
investigates how people analyse (perceive) general sound.

The social sciences assume a human being as the main actor and contribute insights
into cognition, creativity and musicology. Computer science, on the other hand, mostly

2 1 INTRODUCTION

assumes an algorithm to be the one who analyses and creates sound and music. This
artificial creativity, however, does not support users in realising and developing their
own creativity: ”Composers, especially those using computers, have learned – sometimes
painfully – that the formal rigor of a generative function does not guarantee by itself the
musical coherence of a result.” [100]

The intersection were related fields come together to support human creativity through
composition software is relatively small, in particular when the composer is not assumed
to also be the developer of his tool [65]. In 2001, a CHI workshop on the subject became an
exclusive conference called NIME (New Interfaces for Musical Expression), but the field
is still quite new [40] and most of its research deals with controlling algorithm parameters,
in particular for sound synthesis and performance. Several authors are explicitly aware of
that [2, 42, 48, 59]:

”NIME has been largely concerned with hardware interfaces and physical in-
teraction, to the extent that it seems software is sometimes neglected.” [48]

In his introductory book on music informatics, Mazzola [71] distinguished seven com-
ponents of music applications. Three of them are essential for composition tools: a) score
representation (mental- and data model); b) score synthesis (the composition process) and
c) audio-visual-gestural interface. Yet, the book says nothing about musical interfaces and
also emphasises artificial- more than human creativity. Interfaces for the direct creation
and manipulation of audio compositions and musical structures still represent a gap in
the field.

However, computer music as our closest context is an enormous research field that
established itself between computer science and musicology. It developed in parallel with
computer technology and was one of its first applications. Computer music is less descrip-
tive than related sciences and initiated trends of significant cultural impact.

Finally, we want to point out that a german perspective on our subject might be
skewed. Traditionally, Germany plays an important role in computer music research,
the electronic music style and music (software-) technology. But it has lost contact to
recent developments in music interaction design. Practically none of the publications that
we reference in this seminar paper were authored by german researchers. The majority
originates in the UK. The (german) reader shall not underestimate the extent of the
computer music community or the role of music in computer mediated creativity. A
comment by Gall & Breeze [44] marks national differences:

”In England, the National Curriculum requires that students between 5 and
14 years of age engage with Music composition.” [44]

1.2 About this Master Subject

1.2.1 Basic Goal and Approach

Our overall goal is to contribute general as well as domain-specific insights into the in-
teraction design of CSTs. Therefor, we investigate a possibly innovative vision of music
composition software. At this early stage, our general research questions would be: What

1.2 About this Master Subject 3

requirements of music composition interfaces are open enough to initiate fundamental
improvements of such interfaces? How can a more effective and holistic domain model
improve the interaction in music composition and similar creative activities?

As this seminar is the introduction to the topic of a master degree that will also involve
a practical project and a final thesis, and because it is a rather complex exotic topic with
specific implications to the HCI methodology [101], we set the context and lay out our
approach to this whole subject before we further specify the forms of contribution we hope
to make or the exact role and structure of this work at hand.

The literature, the open debates in the field, the incubation phase of our vision as
well as our academic-, professional- and personal experience have brought us to stand by
the following assumptions about research and software development, particularly in our
context: First, there is no use in pretending intuition is no part of it. Second, there is no
use in pretending it is a linear process. Third, there is no use in pretending the process
has a designated initial stage. Unfortunately, the scope of this work is restricted, but we
provide a deeper explanation in the appendices on page (57).

Since (domain-) knowledge is more of a network of argument than a line of argument,
the nature of a scientific work also has no pure question-answer form. Instead, we un-
derstand it as a systematic evolutionary process in which question and answer develop in
interdependence. And that will be how we approach this master subject.1

1. We perform basic stages like analysis, design, implementation and evaluation not
just once, over the whole course of seminar, project and thesis, but also repeatedly
on the micro level, from iteration to iteration, from thought to thought. In other
words: ”Just as we want users to iterate their designs, we apply the same principle
to ourselves.” [86]

2. Although intuition is one of the initial ingredients, each stage yields systematically
refined end results wich might also be generalised to a certain extent [101]. Require-
ments, for instance, are a partially intuitive input to this seminar as well as a more
verified output of the final thesis. We don’t simply go from requirement to product,
i.e. from question to answer.

3. For the purpose of communicating any subject matter, one has to serialise it. In
that respect, this seminar paper and future documentations try to provide a useful
compromise between the sequential story-nature of language and the concurrent
network-nature of reality.

1.2.2 Methodology

Now, we’ll describe our process in more detail. In 2011, Andrew Johnston (Creativity and
Cognition Studios, University of Technology, Sydney) proposed a ”practice-based research

1The perceived demand to justify every decision weighed heavily on this whole work and nearly got it
stuck in a type of centipede’s dilemma, or analysis paralysis. We eventually opted for more pragmatism
and are happy to present a carefully balanced theorisation.

4 1 INTRODUCTION

process” for ”new musical interface design” [59]. We take his methodology as orientation
for our master subject.

Johnston argued that CSTs have specific requirements and demand specific ways of
research and design, therefore he suggested to ”broaden the scope of what constitutes ’eval-
uation’ in this context.” For instance, users have diverging understandings of the purpose
of a CST, so evaluation cannot be about how the designer’s interpretation matches those
of users. Instead, evaluation shifts towards ”identifying, coordinating, stimulating, and
analyzing processes of (evaluative) interpretation in practice.” Researchers and developers
ought to use their designs as ”provocative prototypes which stimulate examination of the
nature of expression itself.” Johnston understands the user study more specifically as a
”user experience study.” The process is depicted in Figure (1).

Initial
Criteria

Musical
Interface

Applied
Criteria

Design User
Study

Theory

Refined
Criteria

Theory,
Aesthetics

Figure 1: Research process for new musical interfaces, according to Johnston [59]

Johnston suggested starting with an intuitive set of criteria ”drawn from the literature
and personal experience” and then using them to design a prototype. The user study
examines this prototype, asking 3 questions:

1. Do the instruments that have been created meet the design criteria identified during
design?

2. How do musicians experience them?

3. What are the relationships between the characteristics of the instruments and the
musicians’ experiences?

One of the results are refined requirements related to the prototype. This approach is
more innovating than the traditional attempt to contribute something new by enforcing
requirements that stem from an old frame of reference. It particularly applies to CSTs
because, as the term tool already implies, they are used by many different people for
many different, quite individual purposes. By acknowledging the limits of user studies and
evaluation techniques (in general and in music interaction), this process better exploits
the potential of evaluation and contributes more reliable, authentic, practical and concrete
insights.

1.2.3 Potential Contributions

In this master seminar paper, we present an extensive literature survey, an introduction
to the subject and a comprehensive list of initial requirements. Our aim was to extract

1.3 About this Master Seminar Paper 5

the main requirement themes and concrete requirements of music composition interfaces.
Lifelong music making, including about 17 years of amateur experience with different
types of music software, allowed us to verify requirements or at least relate to them.

In the subsequent master project, we’ll model the domain based on our requirements
and implement the model, including an easily adjustable prototype interface.

The thesis will then develop the prototype further, define concrete scenarios and evalu-
ate it based on requirements and some small-scale qualitative user study that will, among
other techniques, utilise the scenarios. In total, we hope to contribute ...

1. an extensive literature survey and overview on the poorly explicated subject of music
composition interfaces

2. integrated requirement themes distilled from the literature as well as a comprehen-
sive list of initial requirements

3. design approaches that better support user needs in music composition

4. design approaches that enable novel ways of composing music and encourage more
creativity

5. a prototype to illustrate our contributions

6. an account of user experiences with our prototype

7. an explanation of how those experiences relate to the properties of our design

8. refined requirements that better describe user needs in music composition

9. general insights into the design of CSTs, including requirements, a documentation
of our process and concrete ideas of how aspects of our design might be translated
to different domains

1.3 About this Master Seminar Paper

The initial scope for our literature study included a search of 24 related terms in the
archives of the Interactions Magazine, the SIG CHI Conference and on Google Scholar.
We also manually sifted several volumes of specific journals and conferences, scanning
countless papers:

Publication Scanned volumes
New Interfaces for Musical Expression 2001-2012
Creativity & Cognition 1999-2011
International Computer Music Conference 2008-2012
Computer Music Journal 1999-2012
Computer Music Modeling and Retrieval 2004-2008

6 2 CREATIVITY AS A PRINCIPLE REQUIREMENT

Applied interaction design as we understand it is equally concerned with the user
(social sciences), his tool (computer science), and a specific application area or subject
(domain knowledge). Duignan et al [34] referred to this trinity as the core idea of activ-
ity theory where it ”highlights the mediating role that tools play between the producer
(the subject) and the composition (the object).” Shneiderman [95] found that a common
way to face the specific challenges of CST research is to study specific tasks in specific
domains. Donald A. Norman also ”stresses the importance, to would-be designers, of an
understanding of the psychology of people as well as of how things work.” [44]

To this end, we first look at human creativity (Section 2) and the music composition
domain (section 3) before extracting more specific requirements of music composition
interfaces (section 4):

Section (2) examines the role of creative domains in interaction design, with music just
on the horizon. What is our motivation and responsibility in designing CSTs? What
do we know about their design from HCI and related fields?

Section (3) reviews music composition. What is the structure of music? How do people
compose it? In what context and with what kind of software do they compose?

Section (4) comprises the core of this work. What can be learned from user studies and
other research about composition interfaces? What are their requirements?

Section (5) summarises our results and gives a brief outlook on how we intent to proceed.

2 Creativity as a Principle Requirement

This section develops a frame of reference for later discussions. We’ll assume it as a
guide for interpreting composition-specific requirements. We’ll review CSTs, including
their role in society, design principles and requirements as well as their relations to direct
manipulation, flow and play. If you are familiar with these concepts and need to cut
straight to the chase, you may skip to Section (3).

2.1 A Renaissance

We share the privilege of living in a time in which the individual can witness the transfor-
mation of the world. This work is inspired by the fact that societies rediscover creativity
as a fundamental value and as their most important production factor and source of inno-
vation [16, 31, 82, 95]. Already in 1999, Candy [14] observed that ”interest in Creativity
has grown significantly, even in political contexts.” Regarding creativity, we identify three
underlying key trends that continue to profoundly transform the human-computer re-
lationship: participation in creative processes, assimilation of creative technologies and
collaboration in all aspects of creativity. We’ll explicate them in the following.

2.1 A Renaissance 7

Everyone is a Creator Technology enables more and more people to engage in cre-
ative activities. At the same time, society, including the business world, transforms
from hierarchies to networks. The production of conceptual or artistic artefacts is be-
ing democratised, blurring the line between professional and amateur, between producer
and consumer [12, 26, 75]. Shneiderman [95] said: ”The widespread availability of books
and then electronic media transformed education so that now every student is expected to
compose original texts, videos, animations, music, and art.” Some of the implicated trends
are that content is produced for the joy of the process and at many levels of expertise. It
is not hierarchically distributed to a large number of customers, but shared with a specific
audience in a network.

User-centred interaction design and research has to acknowledge that a bulk of inter-
action is now with amateur creators. Their participation led to a ”democratisation of
music.” [44] Ankney [3], who used modern composition software to invite students into
the creative process, made the point that technology provides ”alternative representations
of music” which are ”helping redefine what composition is and who composes.”

Ubiquitous Tools The transformation of mobile devices into the new personal com-
puters is a driving force with several consequences. The obvious one is that everything
goes mobile. Mobility of tools is also driven by the growing mobility of people. Therefore,
HCI is increasingly devoted to mobile devices [35, 46, 80]. Music software research went
mobile almost a decade ago [45].

More than anything, ideas, inspiration and play instinct are – and always have been –
mobile, so by breaking away from the desktop, (musical-) creativity reclaims its natural
habitat [19, 21]:

”Composition rarely occurs entirely in one location for several reasons: Inspi-
ration is unpredictable and illumination has been found to often occur outside
of time spent actually thinking about the problem. Additionally new ideas
coming within collaborative meetings need to be recorded, and an individual’s
previous ideas need to be presented and used as shared artefacts. Portability
is therefore required of support tools.” [19]

The modern CST should take input from personal devices, which must assumed to be
mobile. Another profound consequence is that CSTs become an invisible part of the user
himself. He perceives his tool less as a separate entity since its interface becomes an
extension to his body, while its data moves far up into the ”cloud.” We get diversification
at the interaction-side and centralisation on the data-side.

This leads to a greater separation of view and model, so tools must be designed with
emphasis on the independence of their different parts and layers. In many ways, the
necessity to re-build desktop applications as equivalent applications for smaller, simpler
devices often reveals how poorly the originals were designed. Today, most innovative end-
user software aims at mobile platforms first and is then ported to the desktop. Eventually,
the availability of tools becomes a non-issue while their design becomes a huge challenge.

8 2 CREATIVITY AS A PRINCIPLE REQUIREMENT

Collaboration The networked society complements expertise and ownership with col-
laboration and sharing. This does not mean that tools need to support two different
creative processes. It rather highlights an aspect that all creative processes have in com-
mon, no matter how many individuals are involved regarding one context and time span.

In the context of this master subject, we consider a situation in which one user com-
poses music. Like all scientific models, this is a beneficial simplification of reality. It still
addresses the core of collaboration. There is no fundamental difference between several
creators and one because creation is either serialisable or executed in a serialised man-
ner. In other words, creation is always concerned with reusing what was created before –
whether in the previous moment or in the previous generation. This may also be a reason
for why creativity requires more autonomy than deterministic production processes. Also,
creative collaboration thrives when collaborators do not depend on being synchronised in
time or place. It is the people who collaborate – not their tools, but by designing tools
for creativity, we also design them for collaboration.

To support these points and their relevance for music composition, we provide the
rationale and references for them in the appendices on page (58).

2.2 The Challenge

Creativity has countless aspects but no concrete definition. It is ”commonly defined as a
process resulting in outcomes that hold some form of both novelty and value.” [21] For our
purposes, we narrow the meaning of being creative down to producing original content :

producing The result (not necessarily the process) has some kind of worth and is repro-
ducible. (value)

original The result is the intellectual property of the creator (user). He decides what to
do with it. (novelty)

content The worth of the result lies in its informational, conceptual or aesthetic rather
than its physical nature. (software tool)

The result of such a process can be of many different types: hypotheses, proofs, algorithms,
study reports, novels, compositions, songs, designs, poems, drawings, stories, product
ideas, mind maps, essays, games, layouts, construction plans and so forth.

In their study on composition software, Fiebrink et al [42] summarised that CST
research ”investigates questions of how technology can foster innovation and expression
in domains from the arts to software design.” Therefore, HCI is confronted with a new
set of requirements that creative activity entails. Traditional notions of the usability,
understandability, ergonomics, productivity, effectiveness and efficiency of interfaces fall
short in supporting creativity [76]. Shneiderman [95] stated:

”But now, a growing community of innovative tool designers and user interface
visionaries is addressing a greater challenge and moving from the compara-
tively safe territory of productivity support tools to the more risky frontier

2.3 Frameworks for Support 9

of creativity support tools. The challenges they face stem from the vague re-
quirements for discovery and innovation, as well as from the unorthodox user
behaviors and unclear measures of success. The risks are high, but so are
the payoffs for innovative developers, ambitious product managers, and bold
researchers.”

Particularly in the context of music composition, researchers contrasted ”mainstream
HCI” with CST design. Bertelsen et al [8] stated: ”In parallel with the mainstream
another tradition has existed. This tradition has positioned interactive technology as
empowerment for creative intellectual work. [...] This tradition can be seen as more
concerned with creativity and development than with seamless routine work.”

Magnusson [68] stated: ”What is lacking is a stronger discussion of the situation where
the computer is used as a tool for artistic creation – an expressive instrument – and not
a device for preparing, organising or receiving information. In artistic tools we have an
important addition, where the signifying chain has been reversed: the meaning is created
by the user.”

Psychologist Thomas Hewett aimed to inform CST design [51]. He argued that cre-
ativity cannot be enforced because we don’t know its sufficient conditions. Creators just
constantly produce necessary conditions for insight, innovation and art. Interface design
is part of that process: ”While it is clearly the case that we cannot command creative
insights or products, there are clear indications in the psychological literature that it is
possible to create conditions that will improve the possibility of creative results.” [51]

2.3 Frameworks for Support

We’ll now give an overview of some significant conceptual frameworks for designing CSTs.

Creator Experience To capture the kind of user experience we want to support, we
need to reach out to some concepts that locate at the periphery of contemporary HCI.
We found that engagement is a central quality of the ”creator experience.” It forces us
to acquaint ourselves with three essential perspectives on this kind of optimal experience:
flow [24], direct manipulation [41] and play [91]. Informally speaking, flow is the kind of
experience that creators aim for, direct manipulation is an interaction concept that greatly
facilitates flow, and play is the purest instance of flow and direct manipulation in action.
Research interlinked all three concepts and confirmed their importance for CST design.
We provide a more accurate account of these points in the appendices on page (60).

Mega-Creativity Ben Shneiderman is a leading figure in HCI. In 1999, he started
promoting research on creativity support [92, 93, 94, 95]. He coined the term CST and
eventually became the biggest advocate of such tools. His book ”Leonardo’s Laptop” [94]
is frequently referenced. There, he said:

”Therefore our focus is not on everyday or revolutionary creativity but on
the middle ground: evolutionary creativity. This still covers a wide range of

10 2 CREATIVITY AS A PRINCIPLE REQUIREMENT

possibilities. [...] My goal is mega-creativity – to enable more people to be
more creative more of the time.”

In the subsequent ”Framework for Mega-Creativity,” Shneiderman posed eight tasks that
might need support: 1) Searching, 2) Visualising, 3) Consulting, 4) Thinking, 5) Explor-
ing, 6) Composing, 7) Reviewing and 8) Disseminating. We present the framework in
more detail in the appendices on page (63). It represents a rather ”high-level under-
standing of user needs.” [19] Like the workbench metaphor for creative environments [51],
Shneiderman’s framework assumes several specific tools being combined.

CST research typically focuses on productive interaction [21], which covers the Create-
category (tasks 4-7) and maybe task (2). Users are typically observed ”experimenting
to better understand the problem and their available options; generating variations to
approach the problem from multiple angles; and continually evaluating their efforts to
reflect on their progress and inform their future actions.” [97]

Shneiderman’s (frame-)work might need to be complemented with compatible ones
that focus more narrowly on the interface itself. For instance, Jef Raskin’s vision of the
”Humane Interface” [84] seems to capture many of the views that we present in our work.
Raskin was a composer himself, and his guidelines have already been applied to music
software [13].

Design Principles In 2005, Resnick et al (including Shneiderman) [86] integrated the
experience of a large number of researchers into 12 design principles. That work is still
the most comprehensive and authoritative compilation of such advise. They focused
”especially on ’composition tools’ – that is, computational systems and environments
that people can use to generate, modify, interact and play with, and/or share both logical
and/or physical representations.” In the appendices on page (63), we summarise what
these principles express:

1. ”Support Exploration”
2. ”Low Threshold, High Ceiling, and Wide Walls”
3. ”Support Many Paths and Many Styles”
4. ”Support Collaboration”
5. ”Support Open Interchange”
6. ”Make It As Simple As Possible - and Maybe Even Simpler”
7. ”Choose Black Boxes Carefully”
8. ”Invent Things That You Would Want To Use Yourself”
9. ”Balance user suggestions, with observation and participatory processes”

10. ”Iterate, Iterate - Then Iterate Again”
11. ”Design for Designers”
12. ”Evaluation of Tools”

For our literature-based requirements study, only principles (1, 2, 3) and (5, 6, 7, 11)
are of significant importance. The others relate to collaboration (4), subjective intuition
(8), development process (9, 10) and evaluation (12). Although intuition plays a role in
excavating requirements, it isn’t part of their explicit form.

2.4 Requirement Themes 11

2.4 Requirement Themes

Throughout our literature study, several requirement themes surfaced, some of which are
not adequately reflected by the 12 design principles of Resnick et al [86]. With music
interfaces on the horizon, we found simplicity, exploration, reuse and abstraction to be
important themes of CST research. The following sections present what we extracted.

2.4.1 Simplicity

Simplicity is a key quality. It implies constraints and is itself required for more specific
qualities like flexibility and concentration.

Constraints A big issue in creative interaction is the role of constraints [51]. For
example, we know that the diversity of material available for input has no effect on the
quality of produced output because users seek to reduce complexity [61]. Even though they
might subjectively desire a diverse palette of material, that diversity would often not make
them more creative since they would select a more homogeneous subset. The important
thing is that users make an effort to reduce complexity and seek specific constraints [21].
Therefore, we might want to constrain the tool’s functionality in the first place, thus ”we
need to identify what contexts of the creativity our tools are aiming at.” [76]

The problem solving environment (PSE) as a combination of specialised tools ”repre-
sents a conceptual shift from the work on PSEs for science and engineering in the 1970s
when it was thought that a PSE should be a single monolithic program that did every-
thing.” [51] Hewett further stated that ”often such general-purpose packages became cum-
bersome for the user to be able to use, difficult for the software engineers to maintain and
difficult for either users or software engineers to modify because of the complexity.” [51]

Since different tools, again, create complexity, we face a trade-off. Shneiderman [95]
said: ”A single tool with a uniform user interface reduces frustrating file conversions and
enables users to concentrate on their problems. Of course, there are limits to what one
tool can do and also good arguments for modular designs, as well as domain-specific
variations.” In other words, we want to maximise the functionality/concept-ratio.

Generality and Flexibility While simplification can create positive constraints (low
threshold [86]), fundamental simplicity is also the precondition of flexibility (wide walls [86]).
A tool should allow to be quite fundamentally restructured by the user [21, 51]. Cough-
lan & Johnston [21] explained structural interaction: ”From this perspective, the mal-
leability of tools and their ability to be appropriated is key, as well as support for defining
novel concepts and constraints.” Therefore it must be constituted from simple general
elements: ”A system that provides low-level building blocks can reduce deterministic lim-
itations, intentionally leaving the system loose and open to appropriation.” Hewett [51]
stressed ”the importance of ’restructuring of mental representation’ of the problem” and
concluded ”it is necessary to provide tools and techniques for generating those basic pieces
and for exploring their creative possibilities.” Hewett also summarised the six criteria for
CST design posed by Candy & Edmonds [15]. Two of them suggest that ”the user should,

12 2 CREATIVITY AS A PRINCIPLE REQUIREMENT

at any time, be able [...] (5) to formulate problems as well as solve problems; and (6) to
reformulate the problem space as the conception of the problem or the work in progress
evolves over time.” Hewett’s work implies that the main task of designing CSTs is to not
get in the way of the user.

The theme of generality is present in the 12 design principles (section 2.3) but is – like
others – scattered over many of them, in this case 1, 2, 3, 6, 7 and 11.

Concentration Besides constraints and flexibility, focus is an important aspect of sim-
plicity. Users need to focus on the appropriate scope but are easily distracted if too
many options and parameters present themselves. This is especially important since the
tool’s interface shapes the user’s thought process even before he does anything. Damle &
Miller [25] observed that ”the availability and utilization of multiple colors to develop a
sketch created a perceptual and cognitive discontinuity and caused designers to adopt a
depth-first strategy. The term ’depth-first’ refers to a design strategy that involves adding
details to the individual components of a design before attending to its overall form.”

2.4.2 Exploration

As the design principles of Resnick et al [86] highlight (appendices page 63), exploration is
a defining part of creativity and has many facets and implications [15, 51, 54, 86, 97, 101].
The term ”playful” often describes exploration [95]. In the same context, Shneiderman
also spok of ”agile creative processes” [95], reinforcing software development as example
and analogy for creative domains.

Rapid Creation Users need to capture new ideas quickly. Coughlan & Johnson [21]
found that sketching as a ”production of rough, ambiguous representations using user-
defined language pervades all forms of creativity.” Project file separation is just one reason
why sketching is poorly supported by modern CSTs: ”Interfaces should offer a dedicated
space in which to perform near-term experiments, without needing to modify the docu-
ment nor its data.” [97]

Comparative Evaluation In general terms, users require ”simultaneous multiple prob-
lem representations which can be viewed or manipulated independently. In many types of
intellectual endeavor, it is important to be able to compare alternative possibilities.” [51]
In the words of Shneiderman [95], users want to ”rapidly generate multiple alternatives,
explore their implications, or revert to earlier stages when needed.” For him and others,
”rich history-keeping” is an important aspect of that [51, 95, 97].

However, ”back tracking” is just one way to manage several versions and it emphasises
the chronological order in which they were created. ”These studies clearly affirm the need
for the user to be able to experiment; to explore variations; and to evaluate past, current,
and potential future states.” [97]

Another aspect of comparing alternatives is what we’ll later discuss as juxtaposability :
”Having the ability to view alternate representations simultaneously allows the necessary

2.4 Requirement Themes 13

instantiation of different possibilities that can then be compared or evaluated for how they
fit with the emerging ’solution’.” [51]

Iterative Development An explorative approach to creation must be iterative [15, 21,
51, 54, 97, 101]. Shneiderman [94] stated: ”Creativity usually entails an iterative process
in which you return to consider earlier decisions.” Hewett [51] agreed that design thinking
has a ”step-by-step character” and is a ”cyclical iterative process in which earlier steps
may be repeated.” Candy & Edmonds [15] posed six design criteria for CSTs. Three of
them describe exploration. According to Hewett [51], these three criteria require that
”the user should, at any time, be able [...] (2) to temporarily suspend judgment on any
matter; (3) to make unplanned deviations; (4) to return to an old idea and goal.”

The basic assumption here is what defines exploration: ”It is not possible to either
command or predict in advance when an insight, an innovation or a creative work will
occur.” [51] Hewett further asserted that ”sometimes in working on a problem what one
accomplishes first is development of an understanding of what the ’real’ problem is.”
This is often described in terms of aimlessness, meaning that users adjust the direction
of their effort with each iteration- or feedback cycle: ”Creator(s) aim at an outcome
they can only partially conceive during the process, and goals may change as progress is
made.” [19] Nonlinear interaction is a challenge rather than a simplification of interaction
design because ”as the completion of creative tasks lacks an obvious path, thought is
required to structure a path to completion.” [21]

On a higher level, aimlessness and non-linearity can surface as concurrency. Consid-
ering and advancing different aspects quasi-simultaneously allows to balance their inter-
relation and create something whole. Researchers have argued that a fundamental aspect
of design thinking ”is the ability to work in parallel on more than one aspect of a design
without having to make a final commitment to any one aspect.” [51] The shorter the
cycles, the more holistic the process.

With iterative development, the analogy to (agile) software development becomes ob-
vious, but note that we don’t mean the creation of the tool itself (like design principle
10 does, see page 63) but the creative process of its user. Creativity implies that output
comes first. One fearlessly begins by delivering something whole and then continuously
optimises the process or the product. Creative minds of all trades have always embraced
this principle that software developers also know under terms like bullet tracer code or
continuous delivery. The opposite approach would be to cautiously define the output and
plan the process before producing anything.

Iterative development is often poorly supported: ”While these processes are frequently
non-linear and iterative, modern user interfaces do not explicitly support these practices,
and instead impose a linear progression through tasks that is a poor fit for creative pur-
suits.” [97] The challenge for CST design is to understand user activity in a more general
way and enable atomic incremental operations. ”A likely explanation for the mismatch
between many content-creation tools and the process of open-ended exploration is the
narrow interpretation of task analysis in the design of user interfaces.” [97]

14 2 CREATIVITY AS A PRINCIPLE REQUIREMENT

Continuous Evaluation Rapid iterations need rapid domain feedback for evaluation [97,
54, 21, 95]. Visibility and progress visualisation are related requirements. The tool should
”support progression through an open-ended task” [97] by providing ”continual evaluation
of one’s progress.”

Layered Learning The principle of exploration applies to creating content as well as
to using the tool itself. CSTs can impede learning by providing too much options at a
too early stage [25]. Shneiderman [95] said that ”tools should be easy for novices to
begin using, yet provide ambitious functionality that experts need. [...] One strategy
for satisfying this principle is to use a multilayer interface design that allows novices to
begin a first layer and move up as their experience increases” Such an explorative interface
would match user needs since novices are easily distracted by too many options but are
(more than experts) willing to explore further possibilities when they need them [5].

Explorative learning of the interface should even be translated to the structure and
presentation of prebuilt content: ”An important concept related to structural interac-
tion and expertise is scaffolding – supporting learning through structures that can be
removed, or modified, when the person has gained greater understanding. [...] By scaf-
folding the interaction with initial malleable constructs, scope for extensive structural
interaction can be effectively integrated with the ability to produce immediately in an
example structure.” [21]

2.4.3 Reuse

Reuse is one of the biggest themes we came across and is also the aspect in which our
view diverges most from the 12 design principles [86] (section 2.3). Although Shneiderman
himself strongly emphasised reuse (”Leonardo’s Laptop” [94]), the design principles that
he co-authored do not echo this need. Apparently, we are dealing with different scopes
and perspectives on a complex subject.

Shneiderman [95] said: ”We already know that an accelerator for creative efforts is
the capacity to locate, study, review, and revise existing projects and performances, such
as open source software modules, Web page source code, architectural drawings, or mu-
sic scores.” Hewett [51] noticed the ”important role played by old knowledge in helping
individuals come up with new insights into the problem(s).” According to Coughlan &
Johnson [21], ”structural interactions occur in the context of previous work in a domain.”
They concluded: ”Effectively alerting users to the possibilities for using previously col-
lected resources in productive interactions is central to the value of such tools.”

Library of Material Nakakoji summarised that a collection of material inspires cre-
ativity: ”These practices also imply that people need to collect ’stuff’ and be surrounded
by it to help them engage in creative practice.” [76]

Hewett [51] specifically described the workbench metaphor that many researchers sug-
gested for creative problem solving environments (CPSEs). That workbench has a ”user
expandable library of re-usable objects.” These ”prior problems” include ”end products”
as well as ”component parts and processes.” The library should also have the effect that

2.4 Requirement Themes 15

working on multiple projects ”does not require a shut down and re-assembly every time
the problem solver switches their attention from one problem to another.”

Recombination of Material Reuse is more than a requirement of CSTs. It teaches a
lesson on creativity itself and leads to another profound requirement. Hoorn developed a
model of creativity to inform CST design [54]. He argued that the creation of something
new is an unusual combination of old things:

”First, people cannot make something out of nothing. Second, when something
is truly only one of its kind it may entail exclusiveness and incomprehensibility,
two antagonists of user-friendliness. As said, people need something old to
understand the new [15]. Making something new, therefore, usually brings
together familiar things in an unusual connection (cf. [11]).”

Hewett [51] agreed insofar as creative domains ”require the development of a vision—
the pattern of relationships among building blocks—that becomes transformed into some
sort of reality. The creative process must then consist in part of bringing all these things
together at one time and place in an appropriate combination to produce a creative result.”
This perspective applies strongly to processes like music composition where structures are
composed from familiar elements.

Now, to combine two different entities, they ”should have a certain degree of famil-
iarity,” [54] i.e. a basis for associating features. In order to compare and integrate the
entities, they need to be represented with a certain degree of abstraction. ”Sometimes
objects go through several cycles of abstraction before they can be combined with other
entities in the form of a concept.” In this sense abstraction is required for reuse, which is
required for creativity.

2.4.4 Abstraction

We explained how reuse requires abstractions. Dependence on abstractions can also be
observed for simplicity and exploration. Actually abstraction emerges as kind of a meta
requirement that is even more fundamental than simplicity.

Hewett [51] emphasised that creative environments must be ”tailorable” and that
this quality involves scalability, implying the need for different abstraction levels. He
stated that ”a working environment to facilitate innovation should make possible both
the perceptual aspects of problem representations (e.g., visual, auditory, tactile, etc.) as
well as abstract and abstracted representations (e.g., numbers, figures, tables, etc.).”

Hewett also summarised the works of Candy & Edmonds [15], who posed six criteria
for CST design, the first of which is that the user should, at any time, be able ”to take a
holistic view, i.e., be able to ’step back’ and look at the whole picture.” [51]

Since they observed that users evaluate their creations at different levels of granularity,
Terry & Mynatt [97] suggested to make all user content available through an additional
high-level view, the ”design horizon.”

Kiyokawa et al [61] found that the diversity of the material that is actually used as
an input ”was positively correlated with the quality of the generated ideas.” However,

16 3 MUSIC COMPOSITION AS AN APPLICATION DOMAIN

”we cannot improve the quality of ideas only by providing diverse information because
of the tendency [of people] to adopt the information-grouping strategy to reduce the
diversity. Hence, it is important to identify an information-grouping strategy through
which the diversity of information can be maintained.” In other words, the simplification
that sacrifices details and builds constraints is not optimal. But through abstraction,
material can be presented in a way that encourages the combination of differing entities,
while sustaining access to their inner structure.

The abstraction theme resonates well with all those design principles (section 2.3) that
we identified as important to our literature-based requirements study, i.e. principles 1, 2,
3, 5, 6, 7 and 11.

3 Music Composition as an Application Domain

This section summarises the background for understanding our domain. If you are familiar
with musical structure and sequencer software and want to fast-forward your reading, skip
to Section (4).

First, we must know what we cannot know. Most importantly, there is no definition of
music. And it might not even be a good idea to go for a pseudo definition. When creating
assumptions and definitions, we settle on a particular idea of a subject. Doing so is, by
its very nature, conservative, i.e. anti-innovative. Vaggione [100] explained:

”It can be argued here that the very idea of ’music itself’ encounters a major
difficulty: nobody can say what music is, other than by means of a normative
proposition, because ’music itself’ is in fact a non-demonstrable thing, and its
practice is neither arbitrary nor based on physical or metaphysical foundations
[...] Of course, there are primitive principles underlying musical practices, but
these should not be qualified as foundations of ’music itself,’ for this would
negate the possibility of developing other musical practices related to different
assumptions.”

In the following, we summarise some of these underlying ”primitive principles,” focusing
on tonal music. We distinguish three basic perspectives on musical structure:

1. The scientific model is mostly concerned with the physics and mathematics of
rhythm and harmony.

2. The mental model stretches from science-based music theory to individual under-
standing of the domain.

3. The data model is the concrete format the application uses to represent aspects of
a potential mental model.

We need to, at least briefly, cover physics and music theory before we attempt to under-
stand requirements or develop domain- and data model.

3.1 Musical Structure 17

3.1 Musical Structure

We assume the ”twelve-tone equal temperament” system (12TET) as our frame of refer-
ence. The basic principles of that system and how it maps harmony are explained in the
appendices on page (65).

The Dimensions of Musical Structure In his book ”Elemente der Musikinformatik”
(elements of music informatics), Mazzola [71] distinguished the colour (sound) and the
geometry (structure) of notes. He thinks of the geometry of a note as a point in a 4-
dimensional space of start time, duration, key and volume, which is a common model in
practice, traditional notation and computer music.

We notice that volume and key describe the reference frequency while start time and
duration describe timing. There are actually only two physical dimensions of music:

1. In the frequency-dimension, entities relate with regard to properties like pitch, vol-
ume and overtone spectrum. It is about the (implied) ”layers” of momentary total
sound, from ”local” sound colour over harmony to ”global” instrumentation.

2. In the time-dimension, entities relate with regard to properties like start time and
end time. It is about rhythm, synchronism and sequence, from ”local” subtleties of
groove to the ”global” dramaturgic order of a piece of music.

Tonal Hierarchy The 12 available tones are a surprisingly rich arsenal that still allows
for rather dissonant intervals and harmonic progressions, so a piece of music typically
emphasises only a 7-tone-subset called a scale. The scale consists of a fundamental and 6
tones that resonate particularly well with the fundamental. The specific selection makes
it very obvious to the ear which of the 7 tones is the fundamental. Therefore, the funda-
mental becomes the key of the whole composition. We say, the composition is written in
a certain key. In classical music, that global key is explicitly defined in the score or even
stated in the title.

The same principle applies to sub parts like chords. When we hit several piano keys
simultaneously to play a chord, we just emphasise some important overtones of the fun-
damental tone, which is why a chord is defined by key (fundamental) and type (overtone
intervals). We might think of a piece of music as one embellished chord, and we might
think of a chord as an enriched tone that (through its local key) relates to the global key.
In the other direction, we might think of a tone as a simple chord in which harmonics
relate to the fundamental, and so on.

Typically, any tonal construct, whether a single note or a whole piece of music, has
a key associated with it. The character of that key is determined by how it relates to
the key of the enclosing entity. Therefore, tonal constructs involve recursive hierarchies
in which the universal concept of the ”fundamental” provides the root for each entity.

In most cases, our ears easily detect which harmonic is the key of a note or which
played piano key is the key of a chord or which chord is the tonic of a cadence, or which of
all the implied tones is the key of a whole piece of music. It typically has a low frequency
that harmonises particularly well with each of the other frequencies.

18 3 MUSIC COMPOSITION AS AN APPLICATION DOMAIN

These hierarchies maintain their effect over time. Even when the key of a composition
seemingly changes through a sudden emphasis on a new scale, does the perceived effect
of that change depend on what the key has been before. Tonal hierarchies and their
persistence over time are intensely studied in music theory [62].

More Hierarchies In many ways, music is hierarchically structured. We explained how
tonal hierarchies unfold in frequency and time. Projecting the concept of tonal hierarchy
into either of both dimensions, leads to other hierarchical models that are one-dimensional
and easier to grasp.

In the frequency dimension, we not only get a tonal hierarchy stripped of temporal
aspects but also a hierarchy of voices and sound colours, i.e. instrumentation. For exam-
ple, the solo violin (concertmaster) is an element of the first violins which are an element
of the violins which are an element of the strings which are an element of an orchestra,
which may be an element of an even more general set of voices.

In the time dimension, we get hierarchies of rhythm and sequence. Atomic elements are
related in time in order to form more complex entities. This sequencing might involve syn-
chronising, interleaving, repetition or simply stringing different elements together. Typ-
ically, time spans are recursively partitioned into a prime number of sections of equal
length. The smaller the prime number, the more natural and easy to grasp is the rhythm.
For example, a simple 4/4 time signature means the two-fold partition of one bar into 2
sections of equal length.

In the theory of musical structure, Lerdahl’s ”Generative Theory of Tonal Music” [64]
is a frequently cited milestone. It emphasises temporal hierarchies and provides a rather
formal grammar of music. Zbikowski [107] examined how general hierarchies of structural
containment and property inheritance have been mapped to the music domain where
they manifest as tonal- or rhythmic hierarchies. Mazzola [71] also strongly emphasised
the recursive structure of music and formalised it through as system of denotators, which
can represent all kinds of musical hierarchies in a unified form.

The core of composing music is the positioning (arranging, relating) of elementary com-
positions in the local parameter space of the emerging ”container composition” which the
elements eventually constitute. The process switches focus between different abstraction
levels within those hierarchies.

3.2 Composers and their Context

It can be argued that most creativity arises where no external incentives lure it away [82].
Most users of composition software are amateurs and semi-professionals. They make
music casually, for fun and on the go. At the same time they’re often innovative, skilled,
experienced and reach a great number of people through digital networking. They’re keen
to be the first ones to integrate different (i.e. latest and oldest) technology into their
processes in order to develop a unique style and artistic identity.

Often, users play many different roles in the whole music creation process. They
are composers, musicians, audio engineers, producers, concept artists and distributers.
Such roles overlap ontologically and blend more and more in practice. When we say a

3.3 Traditional Composition Software 19

composition tool should focus on the creative side instead of production and, at the same
time, call our users producers, we don’t see a contradiction. We use terms like composer,
producer and user interchangeably, just reflecting some subtle differences of perspective
or adapting to the terminology of discussed studies.

Because composition is more about structure and emotional effect than sound colour,
and because the divergent creative stage of composition precedes the convergent produc-
tive stage, the pure sonic quality of audio monitoring is not a priority.

The study by Magnusson & Mendieta [70] indicates that users of audio programming
environments can basically be characterised as well educated males of all ages who tend to
work with unix based systems. In the studies of Barry Eaglestone and his colleagues [17,
36], participants were also well educated males of all ages but tended to be younger. They
also tended to be musically qualified, although only 30% saw themselves as professional
composers.

However, the important point is not to pigeonhole users but to distinguish the nature
of the task the tool should support. The question how heavy a hammer should be is not
answered by detecting how strong its users are but by deciding and clarifying what kind
of craft and activity the hammer’s design should aim for.

3.3 Traditional Composition Software

In a 2008 Interactions feature article on musical interfaces, Cronin [22] gave a brief prag-
matic overview on types of music software and their historical development. Years before
that, the field itself had already examined the composition process and its relation to com-
puter tools on a deeper, ontological level [65, 100]. Here, we briefly describe composition
software.

The core capability of composition software is sequencing – the manual positioning
of musical events for different concurring voices in the time-dimension. Of course, this
involves some instrumentation as well as all geometric dimensions: start time, duration,
key and volume. However, pure sequencers hardly exist. Most composition software
incorporates aspects of sound design, instrument tweaking, score generation, recording,
production and mix. The most comprehensive (not so much integrated) packages are
called Digital Audio Workstation (DAW) but the terms sequencer and DAW are often
used synonymously. We focus on the spectrum between the highly popular DAWs and
some simpler forms of sequencers.

”Digital audio workstations (DAWs) such as Digidesign Pro Tools, Apple
Logic, and Ableton Live are the cornerstone of composition, recording, editing,
and performing activities for producers working in popular music.” [34]

While a description is good, a taxonomy is better. Thankfully, Duignan et al [33]
proposed a taxonomy of music sequencers along with a good introduction to composition
tools. It makes five general distinctions: textual- vs. graphical mode, predetermined- vs.
custom abstractions, eager- vs. delayed linearisation, data- vs. control flow and special-
vs. general purpose. We describe these dimensions in the appendices on page (67).

20 4 DIGGING FOR SPECIFIC REQUIREMENTS

Through those five distinctions, Duignan et al posed 32 types of sequencers. However,
”only a small subset of these potential categories actually contain real sequencers in use
today.” Therefore, ”this taxonomy can be used to discover new types of sequencers” as
well as ”to classify and analyse any music tool with a sequencing component.” We’ll use
five-letter signatures to denote specific types. Duignan et al identified four major classes
of sequencers in use today and confirmed that linear sequencers are most popular. Of
course, there are gradual differences. For instance, trackers are still far more textual than
linear sequencers:

Class Signature Examples

Linear sequencers GPECG Apple Logic Pro, Digidesign Pro Tools
Sample and loop triggers GPDCS Trackers, Ableton Live
Music visual programming GCDDG Max, Reaktor
Textual language music tools TCDCG MusicN, SuperCollider

4 Digging for Specific Requirements

Digging We avoid the metaphors ”gathering” and ”elicitation” when it comes to re-
quirements. The reasons for that set the context for what we call ”requirements digging”:

1. ”Requirements gathering” and ”-elicitation” suggest requirements do already exist
and only need to be picked up somewhere or elicited from user brains. Hunt &
Thomas [55] famously stated: ”Requirements rarely lie on the surface. Normally,
they’re buried deep beneath layers of assumptions, misconceptions, and politics.”
Their first principle of requirements goes: ”Don’t Gather Requirements – Dig for
Them.” To dig for something means ”1) Lit. to excavate to find something that is
buried. 2) Fig. to go to great pains to uncover information of some kind.” [1]

2. The structure of this master subject, its purpose to innovate and our approach to
do so are layed out in the introduction and will further be clarified in section (4.2).
For instance, we need to dig deep into the domain itself, instead of relying on user’s
mental models, which are biased by the tools they use. Also, requirements gathering
and -elicitation are established terms that imply certain practices to which our
methodology may not comply.

3. Tools, in particular CSTs, have the rather general purpose of realising a set of
optimal conditions. We already discuss this in several other contexts. More than in
traditional systems development, CST-requirements are suggested and worked out
by the designer instead of being derived from concrete practical user goals.

4. Related research has produced a wide range of qualitative and quantitative infor-
mation about computer musician’s needs and their tools. We need to start from
existing knowledge and take these diverse sources into account.

5. Still, our subject represents a gap in the field. Its dots haven’t yet been connected.
Only through intense investigation can we uncover its relevant themes.

4.1 The Status Quo: DAWs and Linear Sequencers 21

Specific Connecting CST design (Section 2) with music composition (section 3), our
requirements digging is exclusively dedicated to music composition interfaces. Those
interfaces (sequencers) support editing in time- and frequency-dimension.

In order to get an idea of who composes and how they do it, we must, to some extent,
interpolate between closely related but slightly deviating application areas. For instance,
Magnusson & Mendieta [70] conducted a study on how users relate to digital and accous-
tic instruments. They observed that ”designing an instrument often overlaps with the
musical composition itself (or at least designing its conditions).” Because instrumental
activities are closely related to composition, they can serve as an indicator of the compo-
sition process itself. For example, the study was ”mainly aimed at instrumentalists and
people who create their own instruments or compositions in flexible audio programming
environments.” As such, it provides valuable hints about composition software users and
their needs.

Requirements ”The Pragmatic Programmer” by Hunt & Thomas [55] is a classic that
inspires and reflects our understanding of software requirements. For our purposes, a
requirement ...

1. describes one property of the domain, which includes users and their working pro-
cesses. It only relates to software, as far as software has become an innate part of
the domain.

2. reflects a systemic- or human need but makes no suggestion on how this should be
fulfilled. It may just articulate a fact, be formulated as ”The tool should <satisfy
this need>.” or otherwise.

3. abstracts away from practices, customs, policies and other non-functional details of
the domain.

4. coincides with personal hands-on experience.

Some distinct (yet overlapping) requirement themes pervade the literature. They are
so pervasive that we actually should either not provide any references or reference dozens
of related works for each fact because anything in between inspires a distorted or partial
idea of the whole picture. Also, many facts are so basic to the field that researchers hardly
explicate- but rather implicitly assume them. Please note that we often have no choice
but to reference a few example sources, when the corpus as a whole is far more convincing.

4.1 The Status Quo: DAWs and Linear Sequencers

The first theme is the critique of contemporary DAWs and sequencers. Alistair McNichol,
an expert in creative music technologies, promoted music composition as a vehicle for
imagination and creativity [73, 74]. In the context of the National Curriculum of England,
he focused on students at age 11-14. He noticed that ”the software of choice is often
more appropriate to professional music production or music publishing. There are other
music software packages available specific to this age group which are marketed along

22 4 DIGGING FOR SPECIFIC REQUIREMENTS

educational lines although these employ a ’building block’ approach to composition based
on pre-recorded musical audio loops mostly of fixed musical lengths.”

Professional software provides the required flexibility but, rather than focusing on the
long-winded, domain-oriented, creative journey, it is bloated with details that are only
relevant to finishing steps like recording, mixing and publishing. On the other end of the
spectrum is software that leaves out the technical details but also sacrifices its creative
flexibility.

McNichol alluded to a basic problem in the field of composition software. Not only
is there a lack of true CSTs, but an affinity to the technical side has also become the
entrance ticket to whatever creative possibilities there are. Minds that are primarily
creative would be repelled by most composition interfaces, which suggests that the user
group we’re interested in is, in large part, a potential that has yet to be realised.

One reason for this unrealised potential is that the long tradition of music software
has nurtured certain models and expectations about what music is, how it is created and
how musical interfaces are supposed to look like. ”Today’s compositional tools, especially
computer software, embody some personal views of what music is or how it should be.” [65]

Part of that old paradigm are the different roles involved in music creation. Professional
software was originally aimed at producers, while composers and musicians hardly used
any software at all for their musical purposes. As these other people, who are more involved
in the conceptual creation, turned to computers, production tools tried to integrate their
perspective and at least rudimentarily satisfy their needs. This has led to overblown
standard software like Cubase or Logic Pro that can theoretically cover everything but is
rooted in practices of the past and focused on technical production. It is used by different
kinds of people for different purposes. Naturally, its support for the creative phase is
provisional and far from optimal. Cronin [22] stated:

”In fact, today, Digital Audio Workstation (DAW) software such as Ableton
Live, Apple Logic, Steinberg Cubase, and Digidesign ProTools provide the ca-
pabilities of synthesizers, samplers, sequencers, mixers, effects, and recorders,
all through a single, integrated environment.”

The problem is that such DAWs ”quickly grew top-heavy under the weight of features,
and it became so that these tools lost their simplicity and started to impose their way of
working on their users.”

Duignan et al [34] strongly criticised contemporary DAWs and found that ”success as
a producer is concerned almost as much with developing a robust repertoire of time-
consuming techniques to work around the limitations of software as it is about cre-
ative composition.” Their research ”identified many ways in which these user-interface
metaphors (Barr 2003) from the past often do not support the activities of professional
producers” as well as ”many areas where the abstraction mechanisms provided by DAWs”
were either insufficient or ”lacking altogether.”

Nash & Blackwell [78] also criticised linear sequencers and DAWs for their functionality
overload, fragmented complex interfaces and outdated hardware metaphors. They found
in their data that such software especially limits the flow experience of advanced users.

4.2 The Innovation Strategy: DDID 23

Another transformation that is relevant here is the dispersion of roles. As we dis-
cussed earlier, today’s users expand their application areas obtaining more and more
artistic independence and thereby enabling a whole new level of artistic interdependence
(collaboration). The entire process from idea to publication can be executed by one person
alone. This coalescence of responsibilities has partially reinforced big universal standard
tools but didn’t solve their problems.

Music creation is still a complex process involving innately different activities, but
coupling different interfaces with one software is problematic in all kinds of ways. Un-
compromising interaction concepts can better be realised in small specialised tools that
support one activity well and can be effectively combined. An emerging market and a
following shift of scientific focus seem to confirm that observation.

Because problems cannot be solved at the level of thought at which they were created,2

innovation in our field requires a broader perspective. To re-think composition interfaces,
we need to step back and see beyond past traditions and contemporary definitions. The
literature implies an innovation strategy which we’ll lay out in the following section.

4.2 The Innovation Strategy: DDID

Describing interaction design as being domain-driven is a bit redundant. However, we
want to emphasise that domain modelling, especially in our context, is the foundation of
interaction design, and that fundamental improvement of an interface requires improve-
ment of its underlying model. We summarise this thought as domain-driven interaction
design, directly referring to the influential work of Eric Evans [39].

As we turn our focus to the model, the means and metaphors of its representation
become secondary. We do this as part of a movement in (at least) music software that
could become exemplary for other application areas and eventually contribute a broader
perspective to the science of interaction design. It is, already, common practice in HCI
to build general theories and principles after the fact of successful innovations in specific
domains [41, 101].

The Conceptual Nature of Composition It’s not just that interaction design is a
more comprehensive (holistic) process than interface design [6], but also that music com-
position is intrinsically about conceptual models of music. Jandausch [56] confirmed that
music is an ”abstract” and ”nonverbal conceptual” domain that can only be understood,
represented and communicated in terms of fundamental conceptual metaphors.

There is no ”natural” representation of musical structure since their is no naturally
given model to begin with. Coughlan & Johnson stated in the context of composition and
creativity: ”Representation methods are developed by practitioners to suit their needs,
and are a product of the inherent properties of the domain.” [19] Externalisation and edit-
ing of musical structure always depend on an artificial, provisional notation system that
reflects a certain conceptual model. Duignan et al [34] stated in relation to composition
and abstractions: ”Because DAWs play the central role in mediating between the pro-

2This truism was attributed to Einstein but no source justifies a direct quote.

24 4 DIGGING FOR SPECIFIC REQUIREMENTS

ducer and their composition, producers are entirely dependent on the set of abstraction
mechanisms provided by DAW user-interface designers.”

In the context of computer music, the term score means three things: the model, its
notation system and a concrete instance of model and notation, i.e. the description of a
particular piece of music. When Nash & Blackwell [79] talk about the score and try to raise
our awareness for music notation, they equally mean the system- or model of notation:
”Despite its historically-central role for both performers and composers, notation has
received limited attention from digital music research.” [79]

The Impact of Interfaces Another aspect of DDID is how CSTs determine our un-
derstanding of their domains. The conceptual model communicated by an interface pro-
foundly effects the mental model of its user. Magnusson [68] stated: ”When musicians use
software in their work, they have to shape their work process according to the interface or
structure of the software. [...] To an extent, the musical thinking takes place at the level
of the interface elements of the software itself.” According to Duignan et al [34], ”it has
long been acknowledged that the instruments, techniques, and theory we bring to bear
on the activity of music composition are a core part of the thinking process.” Many other
authors acknowledged this principle for music composition [3, 42, 44].

The Impact of Design The interface shapes the user’s conceptualisation of the domain.
Even when the designer does not consciously think about the model, does he rely on some
assumptions about it. Without them, interface design is absolutely impossible. Therefore,
he is challenged to consciously develop an appropriate conceptual model of music which
may organise the interaction. Psychological studies suggest that ”to facilitate insight it
is important to understand the basic elemental component pieces with which the person
might work to create innovations.” [51]

Magnusson [68] strongly promoted interaction design as opposed to interface design:
”The design of interface elements is often highly (but not exclusively) aesthetic and de-
pending on taste, whereas the interaction design deals with the fundamental structure and
ergonomic idea of the software.” He clarified what interaction design means in our domain:
”Designing is essentially a semiotic act. Designing a digital instrument or programming
environment for music is to structure a system of signs into a coherent whole that incor-
porates some compositional ideology (or an effort to exclude it).” He further promoted
”instrumental interaction” as a guiding principle for this more abstract domain-oriented
design process and even made suggestions on how an ”interaction model” can be evaluated.

This approach is challenging and places more responsibility in the hands of the de-
signer. Duignan et al [34] stated: ”Determining the right vocabulary of abstract represen-
tations to build into the user interface of DAWs is a difficult problem, and these design
decisions have a critical impact on the activity of professional producers.” Linson [66]
concluded that ”a designer should aim to fully consider the potential capabilities of a new
instrument. Instead, some designers reach an artificial stopping point that ends where
the metaphor ends.”

4.2 The Innovation Strategy: DDID 25

The Potential for Innovation We are confronted with a huge potential for deriving
innovative interfaces from models that are innovative by themselves or haven’t yet been
utilised for this purpose. Current software doesn’t tap this potential. Still in 2011, Lin-
son [66] observed that ”the enormous range of possibilities for digital musical instrument
(DMI) design is often limited by the adoption of unnecessary conceptual constraints.”

Because mental models are diverse, unpredictable and partly a result of interfaces, the
designer should anticipate them in a rather general way that values independence from
existing tools and models. In regard to music software, Cronin [22] stated that ”many
product designers (and business stakeholders) become unnecessarily constrained by a rigid
product definition based upon existing categories, rather than a holistic understanding of
user needs and mental models.” Gall & Breeze [44] also reinforced the fact that individual
understanding, culture and context are important and imply that an interface should
make as little specific assumptions as possible.

The New Transparency Moving towards DDID, the representation must emphasise
the abstract structure of the underlying model, replacing real world metaphors with visuals
that are flat, clean and simple. Several authors promote this approach that values direct
visualisation of innovative domain models over well known (hardware-) metaphors [8, 78].

Modern musical interfaces gravitate to the new transparency. ”Recent innovations
in musical user interfaces have broken from metaphors referring to our mechanical past
to achieve many novel ways of providing visual feedback.” [22] One sequencer that gets
frequent applause for its simplicity, flat visuals and related qualities is Ableton Live [22,
79]. Magnusson [68] focused on ”graphical user interfaces (GUIs) that do not necessarily
relate to established conventions in interface design, such as using buttons, knobs and
sliders, nor do they necessarily refer to musical metaphors such as the score (timeline),
the keyboard (rational/discrete pitch organisation) or linear sequencing (such as in step
sequencers or arpeggiators).”

Nash & Blackwell [78] observed that the ”concise, flexible and learnable visual for-
malism” of trackers ”coupled with the ready-to-hand availability of the end product
(here, sound) supports an engaging user experience, that supports flow, virtuosity, and a
see/hear-understand learning cycle.” The authors also confirmed that hardware metaphors
induce indirectness and distraction since real world hardware is just a tool and not the
domain itself. They found that trackers are less visual but promote more direct access to
the musical score, thereby facilitating more flow experience. Traditional sequencers lack
this ”availability of access to the end product (i.e. music).” We suggest that designers
should try to merge the best of both worlds: graphical representation with conceptual
directness.

This new transparency creates a space for the emergence of new interface aesthetics.
Musical interfaces are more than objects of utility, they are part of their users’ everyday
life and should communicate their own nature through expressive design. Nakakoji [76], in
her ”Seven Issues for [CST] Researchers,” mentioned the ”logical aesthetics” promoted by
Hallnäs & Redström [49], who delivered an intriguing argumentation for why the design
of ubiquitous tools is required to shift focus ”from use to presence.”

26 4 DIGGING FOR SPECIFIC REQUIREMENTS

Accepting the Learning Curve Challenging traditional interaction models of music,
we gain a new perspective on learnability. The interface is learnable if it directly reflects
a consistent model of the domain. Here, learnability also implies that the user is able to
learn something. Since the model possibly exhibits some novelty, users might need some
time to find out how they want to apply the tool. Its design should not shy away from
complexity. There is a learning curve anyway, and that is just fine. The designer has to
design it, not ignore it.

Linson [66] stated in the context of musical interfaces: ”The ability to acclimate to
new modes of interaction is a feature of human cognitive flexibility that should not be dis-
regarded in the design process.” We’ll return to this aspect in the context of instruments.
Linson concluded: ”No point on the spectrum of possible designs should become a teleo-
logical horizon or a conceptual prison. In this spirit, we should not hesitate to encourage
radically innovative designs that challenge our assumptions and defy all expectations.”

4.3 What We Dare to Know: Conceptual Metaphors

In the previous section on DDID, we explained why designing a novel composition in-
terface should start with the underlying conceptual model and why the user’s mental
model should only be anticipated in rather fundamental terms, making minimal specific
assumptions about it. We shall not get stuck in the concrete surface of (visual) real
world metaphors or existing externalizations (notation systems) but, instead, go back to
the deeper universal core of the domain. This ”deep model”, whether designed or ob-
served, can be described and represented in terms of conceptual metaphors (CMs). These
metaphors are appropriately general and abstract since they root in image schemas, which
are pre-conceptual patterns of universal embodied experience.

Image Schemas and Conceptual Metaphors In HCI, we’ve come to the understand-
ing that (conceptual) metaphors and blends are problematic when intentionally manufac-
tured as vehicles for communication [50]. But here, we emphasise how universal pre-
existing metaphors determine our perception and conceptualisation of music. We don’t
attempt to promote them through our design. We attempt to adapt our design to the way
people make sense of music. Benyon & Imaz [7] analysed the ”Conceptual foundations of
representations in interactive systems development.” They stated:

”The activity of constructing conceptual artifacts is based on primitive cog-
nitive artifacts such as image schemas. [...] image schemas are artifacts that
derive from our everyday elementary activities; they are produced in such ac-
tivities. However, as (cognitive) artifacts, we employ them in higher cognitive
processes to conceptualize more abstract aspects of reality.”

It is important to realise that this anchoring in image schemas makes CMs far more
universally applicable than what we commonly know as metaphors in interaction de-
sign: ”Preverbal concepts, such as self-motion, source, path, goal, animate and inanimate
things, containment and support are represented by image schemas. These image schemas
belong to the standard inventory and they are present across languages and cultures.” [56]

4.3 What We Dare to Know: Conceptual Metaphors 27

The idea of image schemas goes back to the seminal works of George Lakoff and Mark
Johnson. Together, they had published the classic book ”Metaphors We Live By,” in
1980. Over ten years later, Lakoff summarised their findings on CMs and image schemas
in a chapter of another classic [63]. This ”Contemporary Theory of Metaphor” captures
many aspects of existing music interfaces and provides a valuable framework and palette
of universal mappings that can be utilised for music interface design [56]. Mark Johnson
was one of the first to investigate concrete mappings in the conceptualisation of music. He
identified architecture (physical structure) [57] and movement [58] as fundamental source
domains.

Although musicians don’t necessarily realise it consciously, the MUSIC IS ARCHITEC-
TURE metaphor is omnipresent in their domain. Jandausch found that ”architectural
metaphors are an indispensable part of musical discourse.” [56] The underlying primary
metaphor below them is the ORGANIZATION IS PHYSICAL STRUCTURE metaphor.
Johnson’s architectural sub-mappings are listed in the appendices on page (68). Most of
them can inform music interaction design.

Of course, not all possible CMs have to be employed by one composition tool: ”It is
important to note that not all of the mappings are active simultaneously. Metaphorical
mappings are highly selective and sometimes only partial structure is mapped.” [56]

Musical CMs in Musicology As far as we know, only few other researchers inde-
pendently applied these concepts to music, mostly from the perspective of musicology.
Lawrence Zbikowski is a leading musicologist who researched the conceptualisation of
music and how that process involves metaphors [107]. Brower [11] summarised an inte-
grated ”Cognitive Theory of Musical Meaning.” According to her, the most important
image schemas in tonal music root in four bodily experiences and translate to four musi-
cal concepts. She applied these concepts to the analysis of melody, harmony, phrase and
narration in music:

Bodily Experience Image Schemas Musical Concept

space as made up of bounded re-
gions

CONTAINER musical space

time as marked off into cycles CYCLE musical time
the body as centered, balanced,
and extending upward from a
stable ground

VERTICALITY, BALANCE,
CENTER-PERIPHERY

musical force

motion as following pathways
leading to goals

SOURCE-PATH-GOAL musical motion

Musical CMs in HCI In HCI, Katie Wilkie and her colleagues did intense research on
CMs of music [52, 53, 102, 103, 104, 105, 106]. They identified CMs or image schemas used
by musical experts in conversation and related them to music applications to analyse or
inform music interaction design. The language of musicians revealed the most commonly
used mappings [104].

Some mappings just confirm elements of the obvious consensus about music: a) Music

28 4 DIGGING FOR SPECIFIC REQUIREMENTS

involves repetition; b) Difference in pitch is size or distance, high pitch is up and low pitch
is down; and c) Musical style, -complexity and -quality are continuums.

The other mappings reflect what Johnson [57, 58] hinted at: The two fundamental
source domains are structural organisation and movement:

Music is a recursively structured object. Music is a progressing movement.

A piece of music is an object that is con-
structed from a number of parts and acts
as a container of those parts.

A piece of music as well as harmonic pro-
gression is movement along a path.

A key/chord is an object that is related [to
the tonic] and acts as a a container [for
notes].

Unexpected change in music is diversion.

A rest is an object. Musical silence is a blockage of movement.

4.4 Composition in Perspective: The Big Dualism

The previous section indicated some structural properties of the domain. Now, we deepen
our understanding of processes and users in relation to an emerging underlying pattern.

4.4.1 Composition vs. Decomposition

Several principle distinctions or dimensions re-occur throughout the literature that help
to demarcate and define what composition is and what kind of process composition tools
actually have to support. We found that these continuums are tightly related in a way
that implies a consistent mapping between their poles, allowing us to present them as
aspects of one basic dualism. We do this in order to concisely display their, otherwise
complex, interrelation. For some distinctions, composition is not simply one extreme that
is contrasted with another one but rather requires the transcendence of that particular
continuum. In such a case, the opposite of composition (”decomposition”) is the distinc-
tion itself, i.e. the partiality:

Dimension Composition Decomposition
driver of creation domain & content tool & technology
social horizon consumer-centred, emphatic producer-centred, ego-centric
focus of evaluation emotional impact of the result technical options of the process
abstraction global, multi-level, high-level local, single-level, low-level
basic mindset synthesis analysis
basic philosophy holism reductionism
entity of interest composite element
musical activity composing performing
object of interest score, incl. instrumentation single instrument
aspect of music geometry sound colour
kind of expertise intuition from experience skill from practice
basic topology parallel, non-linear serial, linear
interactions manipulation, editing programming, recording

4.4 Composition in Perspective: The Big Dualism 29

modality visual, multi-modal textual, few modes
sound sources all kinds combined mainly synthesisers, otherwise

recordings
musical style all kinds combined mainly electronic, otherwise

natural
applicability general (tool) specific (instrument)
creativity human algorithmic
popularity mainstream academic, avant-garde

We won’t list all evidence here because there is too much and because this dualism
is quite self-explanatory. However, it provides a frame of reference for instrumentness,
cognitive styles, flow and other aspects of requirements digging that entertain this context.

There is much evidence, that textual- and even visual audio programming environ-
ments such as Max/MSP, PureData, SuperCollider and CSound are more on the side of
”decomposition.” Such tools, electronic music, sound synthesis, low-level interaction, the
synthesiser metaphor and live performance are all strongly associated with one another
[8, 13, 42, 70, 95]. Also, they are more common in academics and avant-garde [8, 34].

Composition on the other hand, is more associated with DAWs like Pro Tools and
Logic Pro [13], although these are still far from optimal for that purpose. Bertelsen
et al [8] confirmed that the more graphical high-level sequencers, whose model roots in
track recording devices and traditional scores tend more towards composition than the
mentioned programming environments.

Vagione [100] contrasted low-level deterministic algorithms with high-level interactive
creativity. Duignan et al [34] distinguished programmatic, automated, procedural sound
generation from interactive, manual, declarative music composition. They contrasted
DAWs with the ”algorithmic approaches to composition and performance, such as those
found in visual or textual programmatic tools that are common in the experimental and
avant-garde computer-music traditions. [...] their procedural rather than declarative
nature (Dannenberg 1993) and their focus on ’generative’ music-making render them
less well suited to the work of the participants in this study.” They described DAWs
with sequencing capabilities as ”the cornerstone of composition, recording, editing, and
performing activities for producers working in popular music (Théberge 1997).”

Many of these aspect revolve around how composition relates to instruments. There
is a continuum between creatively composing musical structure and playing elements of
such predetermined structure on an instrument. The literature confuses and blurs this
distinction, but instruments also teach us a few lessons on composition interfaces: First,
the musical tool itself is an object of interest and part of the domain. Second, musical
tools allow to develop virtuosity and need to be learned. Third, composition involves
some playful improvisational triggering of building-blocks. The first two points imply that
traditional transparency doesn’t apply to musical tools. In the appendices on page (69),
we elaborate on the composition-instrument relation and provide further evidence for the
big dualism that we suggest.

30 4 DIGGING FOR SPECIFIC REQUIREMENTS

4.4.2 Cognitive Styles

Barry Eaglestone and colleagues studied cognitive styles in the context of music com-
position. They reported from several studies with electroacoustic composers [17, 36].
Cognitive styles are a well established concept from cognitive psychology. They are ”ten-
dencies displayed by individuals consistently to adopt a particular type of information
processing strategy.” [36] These tendencies have profound implications: ”Witkin’s work
is of particular interest since the phenomena he identified [global/analytic] appear to be
so pervasive across a range of areas of human activity – from basic perception through
academic success even to career choice.”

Global vs. Analytic The most important dimension distinguishes global (holistic)
and analytic (serial) style. To briefly characterise their difference, analytic individuals
emphasise procedure, concretion, logic and inner structure, whereas global individuals
resonate with description, abstraction, association and gestalt.

The authors describe Witkin’s global individual as ”being more socially integrated and
adapted.” We also find that the global composer applies a more ”user-centred” approach
to music creation. He is more concerned with the music’s effect on the listener than
with its exact definition. Accordingly, he focuses on evaluating the overall result rather
than controlling single elements. His work ”seems to be more influenced by extra-musical
aspects at an abstract level (i.e. emotional, conceptual characteristics of the sound).”
The authors found the analytic approach to be more narrowly oriented towards low level
synthesis, i.e. sound generation techniques and instruments.

In the context of composition, Coughlan & Johnson [19] referred to a model of the
creative process that consists of the stages preparation, incubation, illumination and ver-
ification. They related it to cognitive mechanisms as identified by Gabora [43]. The
”associative mode” of thought corresponds to incubation and illumination as it ”provides
us with the ability to associate loosely related concepts and create novel thoughts.” The
”analytic mode” corresponds to preparation and evaluation as it allows us to evaluate and
utilise ideas.

The global/analytic-continuum is also reflected by different music software traditions,
where DAWs with their plugins better serve the global approach while audio programming
environments are strongly associated with analytic composing.

Global- and analytic style can even be related to different music style traditions. Global
composers are more interested in the use of natural instruments and sounds whereas
analytic composers are more geared towards electronic sound generation.

Composers’ Cognitive Styles The authors also took three related dimensions into
account: imager/verbalizer, intuitive/sensing and reflector/active. They pointed out that
”Relatively intuitive individuals tend to be more innovative than sensing individuals, and
likely to explore possibilities.”

Participants dominantly exhibited the global- and intuitive styles. They also tended to
be imagers and reflectors. This was fortified by the study of Carter [17]. The attributes
global, intuitive and imager strongly correlate.

4.4 Composition in Perspective: The Big Dualism 31

The great majority of participants ”expressed dissatisfaction with some aspect of the
software,” but imagers were particularly dissatisfied: ”Software is well designed for ver-
balizers, since these were mainly satisfied, whereas imagers are currently poorly served by
composition software.”

Composers who are mostly content with their software ”represent a fairly narrow
thread of electroacoustic composition, mainly involving programming, for example, in al-
gorithmic composition, rather than use of functional composition tools.” Carter confirmed
this: ”Programmers and the more experienced are more likely to feel comfortable with
the software they use, and are likely also to feel that it does not inhibit their creativity.”

The study provides further evidence that the global style should be in the focus of
designing modern composition tools. First, software for the global approach was held back
in the past since it demands more system performance and more consideration of human
factors. Second, the global approach to composition is less aligned with traditional tools
than the analytic. One ”global” composer stated: ”The one thing about a notebook is it’s
often just sequential, and you really want something that is more, I don’t know, tree-like.”
Also, retrieval and organisation of building blocks emerged as an important requirement
for this type, or as another global participant put it: ”The problem of starting with a
large palette is keeping control over it.”

The study’s implications for composition software are pretty clear. First and foremost,
tools that are supposed to facilitate creativity and satisfy the greatest number of composers
should be aligned with specific cognitive styles. Note that the way cognitive styles relate
to composition is even more important than how they relate to users since these styles
might be primed and encouraged through the interface.

Requirement 1 (Cognitive Styles) The tool should value the cognitive styles global,
intuitive, imager and reflector over analytic, sensing, verbaliser and active [36].

4.4.3 Conditions of Flow

In Section (2.3), we described the role of flow. Mihaly Csikszentmihalyi, who introduced
the concept, wrote about flow in music performance (Chapter 4 in [90]). Here, we care
about how music notation systems can facilitate flow in the composition process.

Nash & Blackwell managed to conduct extensive quantitative studies on the exact
interaction of composition software users [78, 79]. Chris Nash also wrote his PhD thesis
on supporting flow in computer music composition [77]. One way of data gathering was
to let a special plugin in the main software log user actions. The authors verified that
flow can be observed in music composition, programming and other areas of creativity. In
composition, it is boosted by experience, fast feedback cycles and simple, iterative edits,
which reminds us of the kinship between flow and direct manipulation. Nash & Blackwell
focused on how different models (notation systems) of music facilitate flow [79]. The
results are significant and have vast implications. We’ll discuss them in the following.

32 4 DIGGING FOR SPECIFIC REQUIREMENTS

Multi-Level Manipulation vs. Single-Level Performance There is indeed a con-
tinuum of composition software types (metaphors, notation systems) that ranges from
micro-level technical sound generation (like Max/MSP) to high-level visual music record-
ing and production (like DAWs and linear sequencers).

However, DAWs and linear sequencers can still be viewed as performance-driven since
their multi-track recording metaphor encourages playing and recording extensive (high-
level) chunks of music. In that sense, DAWs are not on the very composition-end of
the spectrum. Composition is more editing- and manipulation-driven (see Figure (7)
in [79]). It is, by definition, concerned with composing higher-level entities from lower-level
building-blocks and, therefore, potentially involves many abstraction levels. That is why,
concerning abstraction, we value a multi-level- even more than a high-level perspective.

It is possible to increase the user’s flow experience by balancing abstraction levels.
Although trackers and loop- or pattern-based sequencers are less visual than the immensely
popular linear sequencers, they facilitate more flow:

”When broken down by product, one of two distinct profiles were exhibited
by sequencers, depending on whether their main UI was based around the
traditional linear timeline and recording (such as Cubase, Nuendo, REAPER
and SONAR) or on the triggering of loops or short patterns (such as Ableton
Live and FL Studio). Significantly, the latter variety exhibited more favourable
dimensions with respect to both the cognitive dimensions of the notation and
subjective experience of flow”

Balancing both worlds can go beyond mixing different principles and, instead, integrate
them into one. Through generalisation and abstraction management, the notation system
becomes more adaptable to different levels and thereby transcends the continuum itself.
In other words: The scope of an editing focus is not defined by what else lies outside of
it, but by how detailed or simplified the content inside of it is represented. This loosely
corresponds to semantic zooming.

The authors indicated that abstractions can translate to flexibility: ”Linear sequencers
show music in the order it will be heard (’eager linearisation’), whereas software based
on short patterns or loops allow greater flexibility and provisionality in the order they
are to be played (’delayed linearisation’).” Because parts of the composition are packaged
as abstract entities like patterns or loops, the user can now reflect, edit and audition on
a higher abstraction level without being distracted by the contained details. Linear se-
quencers have score editing capabilities but hardly any abstractions, especially concerning
playback.

Cognitive Dimensions On the basis of the cognitive dimensions framework [47], Nash &
Blackwell [79] distinguished 16 qualities of the notation system. Six of them stand out as
particularly significant conditions of flow:

1. Visibility (visual feedback from the notation)

2. Progressive Evaluation (audible feedback from the domain)

4.4 Composition in Perspective: The Big Dualism 33

3. Consistency

4. Virtuosity (learnability)

5. Abstraction Management

6. Low Viscosity (rapid editing and sketching)

The dominating importance of simultaneous visual notation- and aural domain feed-
back (visibility and progressive evaluation) is re-iterated throughout the literature. For
Instance, Gall & Breeze [44] observed that ”students almost never listened to their music
without following the visual design on the screen except when they were speaking or ges-
turing to their partner, or designing and playing in a part through the music keyboard.
Thus the composition process appeared to rely on a synthesis of visual and aural stimuli,
arguably an example of ’synaesthesia’ (Kress, 2000).”

The highest correlation with a single feature of flow occurs between progressive eval-
uation and intrinsic reward (fun). According to the data, the latter is also the most
important factor of flow. The authors emphasise the central role of progressive evaluation
in music composition as it is greatly responsible for domain feedback (Figure (7) in [79]).

A typical example of progressive evaluation is the situation in which a few bars are
being played in a loop while the user is editing them at the same time. While the material
progresses towards its ”final” state he gets continuous feedback of his actions. The opposite
would be a recording situation, where the feedback is immediate but not progressive
because it can’t be used to change or correct much of the result.

While the notions of consistency, virtuosity and abstraction management are quite
self-explanatory, low viscosity might need some remarks. In the cognitive dimensions
framework [47], viscosity is described as ”resistance to local change” and it measures ”how
much work the user has to put in, to effect a small change.” It also relates abstractions.
Abstraction layers enable to regulate the editing scope and reduce the side effect of local
edits: ”A ’smart’ environment reduces viscosity by introducing abstractions.”

Audible- vs. Visual Feedback Gall & Breeze [44] confirmed that visual blocks help
to understand the structure of the composition. This need for visibility and graphic
representation is another theme. Yet, we don’t discuss it for it seems self-evident.

However, the findings of Nash & Blackwell make us wonder whether indirect domain
feedback through graphical notation is even more important than direct domain feedback
through sound. Their data indicates that visibility is at least as important as progressive
evaluation. We suggest to approach this interpretation with great caution because DAWs
already have a tendency to overwhelm users with visuals. Nash & Blackwell [78] made
it clear that, for experiencing flow in music composition, audio feedback is crucial. They
confirmed this in their follow-up publication [79]: ”Rather than relying exclusively on the
visual feedback from the notation, tracker experts learn to interlace editing with frequent,
short episodes of playback, the effect of which is to greatly improve the liveness of working
with the music, allowing sound feedback to guide interaction and creative choices.”

34 4 DIGGING FOR SPECIFIC REQUIREMENTS

Other authors alluded to the danger of letting composers become overly attached to
visuals. Gall & Breeze [44] observed how visuals can distract from musical content and
lead to superficial decisions. Pupils had a ”strong tendency [...] to select sounds as a result
of an interest in the name of the sample and the pupils themselves seemed to consider the
visual aspect of the screen in deciding where to place a new sound.” Cronin [22] stated:
”Visualizations of music are always an abstraction, and in many ways can stand in the
way of a musician trusting his or her ears and personal perception of tone and time, which
is truly at the heart of music.”

This elucidates a basic issue of mixing, i.e. balancing volume levels of different sound
sources. The graphical display of volumes misleads the user to make a rather abstract
judgement of the total sound. The evaluation of a mix should be done with the ears
and not be biased by knowledge of gain levels. That is why experienced sound engineers
often mix with their eyes closed. Absolute gain levels are technical details – not intrinsic
elements of the domain.

Requirement 2 (Cognitive Dimensions) The tool should support visibility, progressive
evaluation, consistency, virtuosity, abstraction management and low viscosity [79].

4.5 Requirements of Simplicity

Users want to reach a state of deep concentration on the creative task at hand. This state
can be facilitated by an interface that embraces constraints and focus. The necessary
conditions mostly come down to simplicity.

4.5.1 Focused Functionality

As Shneiderman [94] generally suggested for CSTs, clear functional constraints are also
an essential condition of musical creativity [8, 19, 20, 22, 34, 36, 69, 70]. Available func-
tionality should be meaningfully limited to content-oriented creative tasks.

Eaglestone et al [36] summarised that electroacoustic composers in their study were
dissatisfied with ”technical complexities” as well as with the ”complexity of technical
interfaces” and ”too much automatic processing.”

Coughlan & Johnson [19] observed that composers ”focus on the production of ideas
and their evaluation with reference to the current state of the composition.” They con-
cluded that, ”given the centrality of ideation / evaluation cycles to the process, effort must
be made to reduce the costs of idea capture, modification and removal to a minimum.”

Magnusson & Mendieta [70] asserted that computer musicians need limited tools be-
cause limits foster inspiration and creativity. Their study participants ”expressed the wish
for more limited expressive software instruments, i.e. not a software that tries to do it all
but ’does one thing well and not one hundred things badly’.”

Cronin [22] stated: ”Where the more bloated DAWs provide every function that could
possibly be required in any production situation, the Ableton design team has very in-
tentionally omitted features that could contribute to complexity without adding to its

4.5 Requirements of Simplicity 35

capability as a creative performance tool.” He concluded: ”Adding sophisticated and po-
tentially useful capabilities to a person’s toolset can also add the significant overhead of
managing those capabilities. Many musicians complain that if their equipment setup is
too complex it becomes easy to lose track of their musical ideas because they have to
spend so much energy managing technology.”

Duignan et al [34] spoke of ”compositional paralysis caused by the overwhelmingly
open design space provided by computer-music systems.”

Even within the content space and outside of software tools – musical creativity is
always concerned with ”identifying the concept’s walls” [72] and an attempt to ”soften
and open the walls”. Therefore the limits of the tool should not only comprise the right
functionality but also be clearly communicated.

Requirement 3 (Constraints) The tool should provide only the functionality that is
necessary to actualise its role and concept. It should clearly convey those limits.

4.5.2 Focused Attention

Even though the possibilities provided by a tool should be endless, it is supposed to
encourage concentration. Users often get lost in playing around with the tool instead of
content, or they focus on content but get worn out by micro management tasks. Composers
are overwhelmed with poorly designed but ”over complex interfaces” [36].

Distraction occurs, for instance, when the tool couples technical- with creative issues.
Instead, it should only present what is relevant in the current context. Cronin [22] stated:
”It is incredibly detrimental to the musical experience to stop and think about how to
operate a piece of equipment; the fleeting and elusive ideas behind a song are easily lost
to technical distractions.”

Distraction can also result from too much domain details. Duignan et al [34] observed
that ”the extreme level of control and detail exposed in computer music tools also surfaced
as complexity in the representation of the composition.” Nash & Blackwell [79] found that
trackers, ”by narrowing the scope of editing to shorter excerpts of music, also make it easier
for users to maintain focus and a sense of control, further facilitating flow.”

To encourage concentration we don’t need to limit the complexity or power of the
tool. It rather means we need to hide complexity. The interface should limit the visible
options to what is relevant in the present moment [19, 22, 34, 36, 79]. This is specifi-
cally important to music composition, which is a more high-level endeavour than sound
design: ”Computer-music systems encouraged endless experimentation and fine-tuning of
the minutiae of sound design, in conflict with pushing forward and working on higher-level
compositional decisions and creating finished works.” [34]

Hiding domain details requires abstractions. Through abstractions, even a simple
domain model can adequately describe a complex domain. We’ll elaborate on this in
section (4.8). The same is true for the visual surface. It should hide irrelevant details in
any one situation but can be complex as a whole: ”To be clear, for a user interface to
be simple, it is not necessarily true that it must also be basic or unsophisticated.” [22]

36 4 DIGGING FOR SPECIFIC REQUIREMENTS

Constrained functionality and distraction-free interaction go together with clean, even
minimalistic, graphical interfaces.

Requirement 4 (Concentration) The tool should only present what is relevant in any
one moment, using minimalistic, clean graphical representations.

To understand how to support concentration, we have to ask where the issue came
up. The following sections deal with different types of common distractions in computer
mediated composition.

4.5.3 Managing the Environment

The simplest and most significant requirement is the most overlooked: The tool or creative
environment needs to be present. If we must first ”travel” to the system or wait for it to
boot, simplicity is most obviously absent. We highlighted ubiquity in Section (2.1), where
we found that creative tools should be available to the user at anytime. Consequently, they
should be available wherever the user goes. This accessibility is meant to be instantaneous.
We saw, for instance, that CSTs need to allow rapid sketching of new ideas (section 2.4.2).

Requirement 5 (Accessibility) The tool should support creativity and, therefore,
should be immediately accessible whenever the user might be inspired to be creative.

Now that we know the environment is accessible, we notice that the mere fact of using
a computer is often a source of distraction. The composition tool is just one of many
running programs. Its windows, bars and messages possibly compete with those of other
(music-) applications. Yet, screen space and user attention are strictly limited resources.
Even a task-bar with a system clock can heavily impact the degrees of immersion and
concentration. We know that human (media-) multi-tasking contradicts flow. It also
lowers performance, creativity and even IQ, especially in mobile settings.

Magnusson & Mendieta stated: ”We forget ourselves in working with the tool for a
while, but suddenly we have to open or save a file, retrieve a stored setting, switch between
plug-ins or instruments, zoom into some details, open a new window, shake the mouse
to find the cursor, plug in the power cable when the battery is low, kill a chat client
when a ’buddy’ suddenly calls in the middle of a session, etc. In this respect, many of
the participants saw the computer as a distracting tool that did not lend itself to deep
concentration.”

Participants of that study ”talked about the dangers of getting side-tracked when using
the computer, constantly looking for updates, reading mailing lists, testing other people’s
patches or instruments, even ending up browsing the web whilst trying to make music.”

Fiebring et al [42] observed: ”Composers using synthesis patches in Max/MSP [in
addition to Wekinator] indicated a disruption in workflow due to context switching from
one application to another.”

4.5 Requirements of Simplicity 37

Requirement 6 (Mono-tasking) The tool should encourage being used in strict mono-
tasking mode without any additional context from the system (like taskbar or windows).

4.5.4 Managing the Tool

Whether across- or within applications, managing and switching interaction contexts in-
terrupts flow. In our terms, an interaction context might be a window, screen, modality,
domain model, working mode, metaphor, visual language or the like.

Every tool is specific and adds to the complexity of the setup and process in which
is applied, but it should not add further complexity in itself. A distraction free interface
has, as Shneiderman put it, ”simple metaphors, analogies, or models with a minimal set
of concepts.” [41] Therefore, a music interface should entail only a minimal number of
interaction contexts.

Baher & Weserman [5] indicated that this might be critical for learning the tool and
reaching the flow state. They suggested that, ”as a designer becomes more skilled, acquires
a ’critical eye,’ and internalizes how tools work, he or she, in approaching tasks, focuses
more on the content itself, and less on the surrounding context.”

Cronin [22], once again, described how Ableton Live better addresses human factors
than many competitors: ”Live’s user interface also contributes to its sense of simplicity.
Two main screen states contain the entire interface; one is optimized for improvisational
performance, the other for composition and more-structured performances. A musician
is typically able to spend an entire usage session in one view or the other, never with a
thought to ’navigation’ (a distinctly unmusical concept).”

Nash & Blackwell [78] strongly suggested that mouse input and window management
prevent flow and distract from the actual content, especially in DAWs. They also made it
very clear that a narrow editing scope helps to focus and facilitates flow [79]. For example,
they observed that ”trackers, which are similarly pattern based, also exhibit favourable
profiles, additionally benefitting from the focus and level of control facilitated by the use
of a concise text-based notation, single editing context (contrasting sequencers’ multiple
sub-devices, often across separate floating windows)”

Requirement 7 (Single Interaction Context) The tool should employ as few interac-
tion contexts as possible. To cover different tasks, contexts need to be universal.

4.5.5 Managing Physical Interaction

Much of the problems with tool management result from different modalities of physi-
cal interaction. Users are often forced to switch between recording- and editing device,
between input- and output device, between keyboard and mouse and so on. Bodily in-
teraction fosters creativity, concentration and retention, but context switches threaten to
crush that potential.

38 4 DIGGING FOR SPECIFIC REQUIREMENTS

Resent research tells us that actively using and coordinating both hands fosters cre-
ativity [9, 98]. Magnusson [68] stated: ”When learning an acoustic instrument, the motor
memory does most of the job and your learning ’happens’ as interaction with the body of
the instrument.” Nash & Blackwell [78] observed that ”low-level motor learning of manual
(e.g. keyboard) skills” significantly contributes to flow.

Cronin [22] cited famous producer Brian Eno, who seems to argue in the opposite
direction: ”One of the problems with a lot of software systems is that they expect you to
type, but it uses a part of my brain that I don’t always want to be in the music process.
I don’t want to shift between being a musician and being a secretary.”

Such observations confirm that certain modalities (body, space, visual) better sup-
port music composition than others (mouse, keyboard, text) and that switching between
modalities further inhibits flow.

Duignan et al [34] noticed the issue of different input modalities because participants
frequently switched between recording a performance and manual editing. Users record
”from an interface such as drum pads triggering samples, faders or knobs assigned to
parameters, or a MIDI keyboard triggering notes.” Then they also ”refine and edit these
performances [...], typically by manipulating some form of abstract notation” Study par-
ticipants ”complained about the difficulty of being forced to move between these two
modalities.”

Requirement 8 (Single Physical Mode) The tool should use only one physical inter-
action mode and allow to record & edit any one kind of material through one modality.

Concerning modalities, touch interfaces might promote the convergence of recording,
performing and editing as well as of visual in- and output.

4.5.6 Concrete Simplicity

Before we started this systematic research-based requirements digging, we compiled a
list of criteria drawn from personal experience and domain knowledge. Three of those
very first criteria (apart from aspects of cooperation) are not directly explicated in the
literature. However, they are relevant instances of the simplicity theme.

An interface that encourages concentration, limits the complexity that is visible in
any one moment. The few interface elements that remain should be even more readable.
However, typical DAWs shy away from prioritisation and, instead, utilise pixels to make
(WIMP-) interface elements smaller. With high screen resolution, such elements become
hard to read and interact with.

Requirement 9 (Scalable Graphics) The tool should employ GUI-elements whose
dimensions are relative to screen size – and independent of screen resolution in pixels.

When editing (arranging) content in contemporary DAWs, the user often has to zoom
and scroll horizontally and vertically, using four different sliders at the edge of the view,

4.6 Requirements of Freedom 39

distracting the user, consuming his time and impeding his overview. Nash & Blackwell [79]
measure that ”lengths of auditions are set and then retained for long periods of time
within sequencers, possibly indicating that the involved process of preparing, targeting,
and playing material in the sequencer (e.g. with the mouse) hamper the use of incidental
sound feedback during editing seen in tracker interaction.”

Requirement 10 (Fluid Panning and Zooming) The tool should make navigating
2-dimensional content representations (like the frequency-time-plain) simple and fast.

In all music software, the volume of a single source can only be changed absolutely –
not relatively. After adjusting one source, the overall mix often breaks- or doesn’t exploit
the available volume range. Such a mix must then be corrected by adjusting every other
source that contributes to the mix. During the creative phase, which takes much longer
then final mixing, these adjustments are an annoying waste of time. This corresponds to
our observation that visualising absolute gain levels actually counters intuition (page 34).

Requirement 11 (Relative Mixing) The tool should allow to adjust the relative vol-
ume of each sound source independently and not bother users with absolute gain levels.

4.6 Requirements of Freedom

Of course, users do not want to be impeded in their possibilities. While simplicity demands
all available actions to be creative and meaningful, freedom demands all creative and
meaningful actions to be available to the user. Freedom in this sense is about the openness
and flexibility of software.

4.6.1 Openness

Study participants ”craved for more freedom and open work environments. Naturally, this
went hand in hand with people’s use of environments such as SuperCollider, ChucK, Pure
Data and Max/MSP vs. preference of less open or more directive software like ProTools,
Cubase, GarageBand, Fruityloops, etc.” [70] We suggest that, the issue of openness is even
more urgent in DAWs and linear sequencers because they are more restrictive. Composers
suffer from a ”lack of tools integration and interoperability” [36] and are concerned about
the ”continuing influence of legacy systems and standards.”

Complementarity Users know that a tool is not a toolbox. They don’t expect it to
serve every purpose. But they do expect from a tool that it doesn’t try to serve every
purpose and, instead, opens up to cooperation with other tools. We already discussed
this in Sections (2.3) and (2.4.1). It turns out that a musical tool needs to be designed
with this specialisation in mind. It must develop an identity in order to play a meaningful
role within a composed musical setup. Shneiderman [94] said: ”The creativity framework

40 4 DIGGING FOR SPECIFIC REQUIREMENTS

will work only if there is integration of multiple creativity support tools. [...] the main
challenge for users and designers is to ensure smooth integration across these novel tools
and with existing tools.”

Requirement 12 (Complementarity) The tool’s functionality should focus on creative
music composition and integrate with other tools for sound design- or technical needs.

Interchange Users need their content to be independent of the tool with which they
created it in order to freely combine different tools and cooperate with- or consult other
people. Therefor, produced content should be stored in formats that are widely spread,
simple and open to everyone. Shneiderman [94] said: ”The first aspect of integration is
data sharing and it can be accomplished simply by providing compatible data types and
file formats [...] You should be able to download a song and put it into a composition tool
so that you can read the notes and make your own variation.”

WAV is an obvious candidate for raw audio, but it is also thinkable to introduce a
complex new format, for example, if it is openly documented, free to use and XML-based.
Bullock & Coccioli [13] stored their model in an online database or in a local XML file
hierarchy. Ideally, different developers can provide different tools for a data-format so
that it becomes more of an open standard. Recently, the IEEE 1599 standard for XML
based music formats has been declared [4] and there also exists the MusicXML format for
pure score data.

Requirement 13 (Interchange) The tool should only accept and produce data formats
that are simple, open, widely spread, free to use and well documented.

Self-Sufficiency Independence from other tools also requires self-sufficiency of the tool
in use. Composers who mostly use music programming environments are particularly sen-
sitive to the issue of openness in music software [70]: ”The questions of open protocols and
standards, of legacy in software, of collaborative design and freedom to change the system
were all important issues here.” Participants ”reported discontent with the uncertainty
of the continuation of commercial digital instruments or software environments. Their
production could be discontinued or not supported on new operating systems. Unless
open source is used, the proprietary protocols could become unsupported rendering the
instruments objects of archaeology.”

The least that a tool can do is to be self-contained and not depend on other tools,
protocols, external libraries, web services, plugins and the like. It should be possible to
send a musical piece by email without considering dependencies. The format should be
readable by humans and completely open so that every one can develop software to edit
and play the material. Contemporary DAWs and sequencers meet none of these criteria.

4.7 Requirements of Exploration 41

Requirement 14 (Self-sufficiency) The tool and its produced content should be inde-
pendent of other software. They should contain all referenced data and information.

4.6.2 Generality

In Section (2.4.1), we discussed generality in context of the simplicity that it requires.
Here, we discuss it in context of the flexibility that it enables because flexibility turned
out to have special importance for composers. Only a general tool can serve different
individual purposes. Music software should leave flexibility and expressiveness to the
user. The software does in itself not have a goal or ”purpose” other than this generality. It
rather provides a space for creativity. This also suggests to employ universal abstractions
in the domain-/interface-model.

Composers want to have ”more control over things and be less directed by some com-
mercial company’s ideas of how to set up the working environment or compose/perform
music.” [70] Study participants were also ”critical of the limitations of software. People
felt that software limitations are due to engineering or software design, as opposed to the
physical limitations of natural material.”

In his work on semiotics in composition interfaces, Magnusson [68] indicated a deeper
reason why such tools are more general than others: ”In music software, the user is at the
same time the receiver and interpreter of information from the designers of the software
and the sender of information in the form of the music being composed using the tool.
This dual semiotic stance is important in all tools (whether real or virtual) but becomes
vital in contingently designed tools such as music software.”

Vaggione [100] argued that a composition tool must leave room for emergence: ”This
task cannot be exhausted by a linear (a priori, non-interactive) problem-solving approach.
Interaction is here matching an important feature of musical composition processes, giving
room for the emergence of irreducible situations through non-linear interaction.”

Linson [66] reminded us that ”there may be numerous ways to characterise the aim, or
multiple complex aims, but nonetheless, the DMI is a mediating technology, not an end
in itself. After all, instrument is nothing more than a glorified synonym for tool.” Because
generality stresses the ”aimlessness” of the composition process, which is concerned with
creating interesting, prolific ”situations,” it pictures the process as one long preparation
phase and ties in with the theme of preparation and re-use.

Requirement 15 (Generality) The tool should make as little assumptions as possible
about how and what users compose. It should provide basic versatile building-blocks.

4.7 Requirements of Exploration

Music composition inherits all the aspects of exploration that we observed for CSTs in
section (2.4.2). ”The experience [of music interfaces] must allow for playfulness and spon-

42 4 DIGGING FOR SPECIFIC REQUIREMENTS

taneity, the enablers of the best of human capabilities.” [22] However, the specific impor-
tance of freedom in music composition puts exploration into a new light.

4.7.1 Reconciling Simplicity and Freedom

Simplicity and freedom seem to form a trade-off where constraints and focus contradict
openness and generality: ”Musicians become easily bored with the ’popular’ tool, while the
casual user may get lost with the sophisticated one.” [60] But actually, both requirement
themes fit well together. We summarise this transcendence as exploration. The explorative
interface is layered in a way that allows the user to be focused in the present moment but
also to explore further possibilities. Many publications note the importance of exploration
for balancing constrains and flexibility in music composition tools [29, 42].

Magnusson & Mendieta [70] said: ”According to our data, the process of exploration
is a very common way of working with software, where people set up a system in the
form of a space of sonic parameters where the user navigates that space until a desired
sound or musical pattern is found.” They also pointed out that study participants ”like
to see software that has an easy learning curve but incorporates deep potential for further
explorations, in order not to become bored with the instrument.”

Vaggione [100] alluded to the fact that constraints and freedom naturally go together
since composers intuitively seek for constraints as a catalyst for creativity: ”Composers
build musical situations by creating constraints that act as ’reflecting walls’ inside which a
tissue of specific relationships is spun.” The same was found in cognitive psychology [10].

Requirement 16 (Emergent Exploration) The tool’s foundation should be simple and
constrained in that way from which flexibility and exploration emerge. (Lego-paradigm)

4.7.2 Learnability through Exploration

Nash & Blackwell [78] emphasised learnability and predictability as requirements for flow
support in composition tools. They observed that ”expertise and experience have a signifi-
cant, positive effect on the conditions required for flow” implying that challenge regulation
is crucial for long term usage. These findings fortify the need for layered learning in CST
interfaces (section 2.4.2).

As discussed earlier, simplicity and learnability do neither imply a simplistic domain
model (section 4.5) nor a totally flat learning curve (sections 4.2 and 4.4). Great user
experience demands an ongoing challenge. We also know this from game design and the
concept of flow (appendices, page 60). Exploration is a way to regulate the challenge and
provide flexibility while preserving control and focus.

Requirement 17 (Interface Exploration) The tool should allow to be learned itera-
tively so all users are focused and in control and still able to expand their options.

4.8 Requirements of Abstraction 43

4.7.3 Meaningful Exploration

Of course, the explorative effort should be directed at the musical content and not get
stuck in the mechanics of the interface itself, thus the interface layers should correspond
to layers within the domain. Ideally, they exploit structural commonalities to make the
explorative navigation consistent. This echoes direct manipulation (appendices, page 60).

Allowing the user to explore the solution space requires that it is structured in an easy
way. If the domain model consists of few simple atomic concepts (Requirement 16), it is
easy to understand and explore, although it might be complex in its possibilities. That is
another reason why interface innovation should be derived from an innovative model.

Like many others, Bertelsen et al [8] strongly suggested that exploration is a crucial
element of the software-based composition process and that it is better facilitated by a
universal and constrained domain model than by the use of metaphors.

Even on the level of the whole musical setup, exploration emerges from a diverse set of
simple elements which can be combined. Eaglestone et al [36] argue ”that ’voyage of dis-
covery’ composition also requires integrated use of multiple tools with ’clean’ interfaces.”

Requirement 18 (Direct Exploration) The tool’s interface structure should emerge
from the domain structure so that users, while exploring one, learn both.

4.8 Requirements of Abstraction

4.8.1 The Role of Abstraction

We examined CSTs, musical structure, the status quo, an appropriate innovation strategy,
conceptual foundations, the core process, cognitive styles, flow and specific requirements
of simplicity, freedom and exploration. Each of these aspects more or less suggested that
abstraction plays a central role in music composition interfaces. In total, abstraction plays
the central role.

High-Level We learned that composition happens more on the high-level end of the
spectrum. Emmerson [38] stated: ”Webern in his ’Path to the New Music’ confirms
that he, Berg and Schoenberg worked from ’an intuitive vision of the work as a whole’
– which came in a flash of inspiration – to the details. This is particularly strong in the
Austro-German tradition.”

Eaglestone et al [36] found that the problems that electroacoustic composers have with
software ”are particularly important for supporting a holistic [global] approach to com-
position” The fact that composers dominantly exhibit the global cognitive style which is
geared towards high-level structures, shows a definite ”need for abstract notation/scoring
systems.”

Multi-Level Since composition is, by definition, the process of composing high-level
composites from lower-level building-blocks, it naturally involves several abstraction levels.

44 4 DIGGING FOR SPECIFIC REQUIREMENTS

Many authors in computer music have noticed this need, for instance, under the terms
”granularity” and ”zooming” [8] or with regard to audio processing and mapping [42].
Coughlan & Johnson [19] repeatedly recognised that users need to operate at ”different
levels of granularity.”

In another study, (mostly global-) composers also complained about ”poor perfor-
mance” [36]. We suggest that a tool that truly regulates abstraction levels has less
problems with performance since these levels would introduce to music what is known
as ”LoD” in computer graphics.

Amitami et al [2] combined the score metaphor for low-level details with a more ab-
stract representation for the macro-level. They found that making phrases available as
distinct entities changes the process from chronological generation towards combination
and promotes macroscopic actions. We interpret this as a more creative interaction than
micro-level linear production.

Vaggione, 2001 Vaggione [100] explained in some detail why domain-driven interaction
design as we discussed it (section 4.2) naturally makes abstraction layers the driver of
innovation for composition interfaces. He illustrated that ”a ’note,’ for example [...] can
be seen as a chunk of multi-layered events covering many simultaneous temporal levels,
each one having its own morphological features that can be captured, composed, and
described using adequate representational systems.”

He further argued that this kind of innovation should be deeply integrated in the
interaction model and not come simply as an addition to navigation, concluding that ”a
new category must be added to the action/perception feedback loop, a kind of ’shifting
hearing’ allowing the results of operations to be checked at many different time scales.”

He also alluded to the issue of different abstraction levels requiring different represen-
tation systems but acknowledged that this is mainly a feasible challenge to object oriented
design.

All the research that promotes abstractions for composition tools emphasises the re-
quirement to closely integrate this approach with the audio feedback cycle (for instance,
section 4.4.3). According to Vaggione, ”this kind of situation needs to be constantly
checked from a musical point of view. The action/perception feedback loop is here the
pertinent instance where this situation can be musically controlled and validated.”

Duignan et al, 2005 - 2010 As we foreshadowed in different contexts, Duignan et
al [34] found that the primary reason for various problems of modern DAWs is their lack
of support for abstractions. On page (19), we discussed the taxonomy of sequencers [33]
which Duignan, Noble and Biddle presented in 2005. There, the authors clarify that
custom abstractions are exclusively provided by music programming environments, which
are also textual or data flow oriented.

One particular desirable type is missing in common music software. The authors
had noticed this and hinted that, at the time of publication, they were ”designing a
tool which will fit into a novel class identified through this taxonomy, characterised as a
graphical, custom, delayed, control-flow, general purpose sequencing interface.” [33] This
type basically adds custom abstractions and delayed linearisation to the popular type

4.8 Requirements of Abstraction 45

of linear sequencers. Both qualities are tightly related since delayed (i.e. spontaneous,
improvisational, dynamic) linearisation requires some degree of abstraction.

However, we found no evidence of the tool Duignan et al were designing. Our discus-
sions of the ”big dualism” (section 4.4 and appendices page 69), cognitive styles (4.4.2),
flow (4.4.3) and requirements already strongly pointed to the very type Duignan et al had
in mind. Now, we explicitly require our tool to be a ”GCDCG-Sequencer.” We’ll see that
the requirements of abstraction provide further confirmation that this novel sequencer
class is needed.

Requirement 19 (GCDCG-Sequencer) The tool’s sequencer type should be: graphical
mode, custom abstractions, delayed linearisation, control flow and general purpose [33].

In 2008, Matthew Duignan completed his amazing PhD thesis on abstractions in com-
puter mediated music production [32]. It provides a first investigation into the subject,
supported by a study with 17 participants. In 2010, Duignan et al published a summary
of that thesis [34]. As far as our research could verify, that summary is the second and
last mutual publication of Duignan, Noble and Biddle, but they chose not to refer back
to their taxonomy.

Apparently, the subject of abstractions in music production is complex and needed
some initial analysis and orientation, before any practical innovations could be envisioned.
Therefor, Duignan et al contributed not only a profound conceptualisation of abstractions,
but also design implications and evaluation criteria. They stated:

”This framework helps us understand and clearly identify issues that need to
be resolved in the next generation of DAW user interfaces.” [34]

The authors identified four types of abstraction, corresponding to 1) voices; 2) time;
3) processes and 4) reuse and versioning. Referring primarily to their framework, the
following sections present these abstraction types and their implied requirements.

4.8.2 Voice Abstraction (VA)

VA is concerned with the representation and aggregation of voices. In the following, we
discuss the four aspects of VA that we identified through the works of Duignan et al [34].

Transient Voices In software, voices are often presented as tracks, channels or instru-
ments, but voices are not these abstractions. A voice is typically a monophonic sound
source that is consistent in its musical function and characteristic sound colour.

A voice isn’t necessarily present at any moment in a piece of music, which poses a huge
challenge to sequencing interfaces: ”Despite only a portion of these voices’ sounding at
any one time, each sits on a dedicated track that exists for the full duration of the piece,
contributing to information overload.” In addition to information overload, these tracks
waste screen space.

46 4 DIGGING FOR SPECIFIC REQUIREMENTS

Sometimes, transience results from recording several takes for one logical voice, i.e.
”multiple recorded ’takes’ of a single part that are ’comped’ into one edited recording
where only one sub-voice plays at a time.” One study participant stated: ”Sometimes
you’ll go through all the backing vocals and edit them all up and group like six tracks of
backing vocals together because it is one person as one long track, and bounce that.”

Clearly, users require ”an abstraction mechanism that acknowledges the transient na-
ture of voices and supports appropriate visualization and manipulation.” Therefore, ”Fu-
ture user-interface designs could challenge the multitrack-mixing model and support new
voice-abstraction mechanisms and visualizations that account for transient voices.”

Requirement 20 (Transient Voices) The tool should provide an abstraction mecha-
nism to represent transient voices as what they are and without wasting screen space.

Multi-Level Groups Even without transient voices, projects often contain too many
voices, i.e. tracks, therefore ”voice aggregation is a core abstraction mechanism required
for dealing with large projects.”

Voices typically belong to groups. For instance, a sample might be part of a tom sound
which is part of the toms which are part of a drum set which is part of the drums which
are part of the rhythm group and so on. VA must support such groupings and allow to
treat a group as a single voice.

Study participants ”used voice-aggregation mechanisms, either through rendering to
raw audio, also called bouncing, or through usage of folder track-type features that group
and visually combine tracks.” They did this ”to allow them to manipulate multiple voices
as one. This was particularly critical for wholesale rearrangement of a piece.”

Requirement 21 (Voice Groups) The tool should support multi-level voice groups.
Groups should act as voices, including their representation, editing, reuse and so forth.

Multi-Level Mix In the sound mix, voice groups play the same role as in arranging
and editing. Therefore, the abstraction hierarchy of voices must naturally integrate with
hierarchical mixing. This is also necessary due to the central role of audible domain
feedback, as we discussed in different contexts.

Requirement 22 (Emergent Mix Groups) The tool should integrate all mixing with
the multi-level voice groups, thereby letting mixing groups naturally emerge.

Juxtaposability An issue or requirement that gets amplified by VA is ”juxtaposability,”
which is the simultaneous, comparative editing of different entities. It is particularly
important in composition, due to the ”combination of multiple related parts, such as
harmonizing vocals, which play simultaneously and need to be edited and visualized as

4.8 Requirements of Abstraction 47

a single unit” [34]. Juxtaposability supports flow since it strongly (and significantly)
correlates with ”the sense of control.” [79]

VA should allow to relate voices from different groups to each other. Otherwise, it can
be ”difficult or impossible to see sub-voices in their surrounding context. For example, if
two sub-voices in different groups need to be carefully edited in relation to one another,
it can be difficult to work accurately if they cannot be seen side by side on a shared
timeline.” Therefore, ”new mechanisms for aggregating voices also need to be more flexible
in allowing sub-voices to be seen and edited in the context of other voices.”

Requirement 23 (Juxtaposability) The tool should support the simultaneous com-
parative editing and evaluation of concurrent voices, even across group abstractions.

4.8.3 Temporal Abstraction (TA)

In Section (3.1), we saw that musical structure unfolds in two physical dimensions. While
VA deals with the frequency-dimension, TA deals with the time-dimension. Thereby, VA
and TA, together, cover musical structure (geometry) and are the most important kinds
of abstraction in music composition, which ”is fundamentally based in the structured
organization of audio in time.” [34] In the following, we discuss the five aspects of TA
that we identified through the works of Duignan et al [34].

High-Level The study strongly emphasises the wide range of granularity that users
require. At the highest level, they want to relate whole ”projects” to one another: ”In
an ideal world, our producers could move between entire musical pieces on an ad hoc
basis and rearrange their set list on the fly without any interruption to the flow of the
performance.” Unfortunately, ”one of the significant failures of most DAWs is that they
do not provide representations at the level of the set list.”

Contemporary music software stores user content in separate project files. This im-
poses certain artificial categories on the composer that don’t exist in his domain. For
instance, a composition might be a series of symphonies or a 12 second loop. The com-
poser may not even know what eventually emerges, which is typical for creative processes.
So it’s not for his tool to decide that ”song project” is the appropriate scale. However,
this argument leads us to the issue of project files and global reuse, which we’ll discuss in
Section (4.8.5).

Low-Level The temporal low-level also has some specific implications. Composers want
to keep access to very small time frames, but contemporary DAWs often make them
give up these details in favour of simplification on higher levels: ”DAWs only support
a destructive process of temporal abstraction in which lower-level temporal structure is
lost.” Study participants ”didn’t want to lose the ability to view, manipulate, trigger,
and edit material at more-granular levels. As one respondent noted, I like that within
one bigger pattern, you can have multiple patterns within that.” Of course, if edits are

48 4 DIGGING FOR SPECIFIC REQUIREMENTS

destructive, lower levels aren’t truly available. We’ll continue this point in Section (4.8.4)
with regard to multi-level audio processing.

Groove Timing Another issue occurs on the micro-level of milliseconds: ”Producers
demonstrated a need here to deal directly with abstractions of beats as well as groove
timings.” One participant explained that ”to get a good groove you often need to move
certain elements of the track slightly ahead or behind of the beat. ... That is a huge part
of music production.”

Start times of musical events are typically anchored in the raster of beat and time
signature. But when composers edit rhythm, they simultaneously want to edit micro-
level offsets. These offsets are too small to be represented or edited with the same scale
and notation as rhythm. Often, they are not even perceived as time-related. A slightly
delayed drum hit might be perceived as lazy or quiet. This feeling only arises because the
drum hit clearly implies its anchor time, with which the brain then identifies it. Therefore,
groove can be viewed as an intended kind of cognitive dissonance. The bottom line is that
groove timing cognitively presents itself as a different dimension, separated from time.

Requirement 24 (Groove) The tool should allow to edit micro-level groove timing in
the same context- and in relation to rhythm, keeping rhythm information untouched.

Multi-Level While the highest- and lowest levels somehow elude the conventional time
axis, there are still many temporal scopes that need to be integrated. Duignan et al [34]
found that multi-level TA is an urgent requirement of sequencing interfaces since all their
participants ”wrestled to various extents with mechanisms for the hierarchical structuring
of time.” Users require ”affordances for manipulation of multilevel temporal abstractions”
reaching from ”short musical riffs and patterns, to longer phrases and repeating sections,
all the way up to large song structures such as the traditional verse, chorus, and bridge
sections.” Eventually, tools are ”required to enable the quick rearrangement and editing
of material at various levels, and to support interactive triggering for experimentation in
the studio or live on stage.”

Requirement 25 (Temporal Abstraction) The tool should provide multi-level tempo-
ral abstraction for sequencing and composing musical objects at all temporal scopes.

Liveness Our discussions of instruments (section 4.4 and appendices page 69) and flow
(Section 4.4.3) introduced abstraction as a precondition of liveness. Duignan et al [34]
strongly emphasised that abstractions are needed to seamlessly merge linear sequencing
with spontaneous experimental play. In terms of their taxonomy (section 3.3), the interface
should allow delayed linearisation.

The authors contrast ”the necessity to arrange musical material on a linear timeline”
with ”the necessity to create temporal structures that can be triggered.” Both modes

4.8 Requirements of Abstraction 49

”are deeply interlinked through the entire composition and performance activity.” Study
participants ”switched constantly between the two approaches, creating material in a
linear fashion, and then reconstituting and combining ideas in a nonlinear manner to
create further linear organizations of material.”

Duignan et al noticed that ”no major DAW provides a set of coherent abstraction
mechanisms that allow musical material to move back and forth between linear and non-
linear representations seamlessly.” They ascribe part of the problem to ”how poorly the
dominant multitrack-mixing model deals with this.”

There is no doubt that, ”ideally, as producers experiment with musical form in a
nonlinear manner, they can create new linear arrangements of material while retaining the
nonlinear relationships for instant live experimentation” Therefore, ”future user-interface
designs could blur the line between linear and nonlinear abstraction mechanisms further,
allowing a linear representation to retain nonlinear arrangement information throughout
the production process.”

Requirement 26 (Liveness) The tool should allow for explorative, performance-like
linearisation, i.e. the playful triggering of musical objects of all temporal scales.

4.8.4 Process Abstraction (PA)

This is basically about audio processing. In terms of the sequencer taxonomy (section 3.3),
audio processing is especially important to data-flow sequencers. In section (4.4), we also
argued that sound design is not at the core of music composition. However, combining
different musical objects necessarily involves aspects of audio processing, which ”was a
significant component of the activity system for all [...] participants.” [34] The following
paragraphs discuss the two basic aspects of PA that we identified through the works of
Duignan et al [34].

Audio Material vs. Audio Stream A basic problem that causes many of the PA
related issues is that DAWs actually don’t associate their audio processing with audio
material but with audio streams. The broad range of effects and other processors can
only be applied to channels. Most importantly, tracks act as channels for the material
placed on them. The audio-nature of the material itself can only be manipulated if it
actually is raw audio and – even then – only with a few basic destructive operations.

The issue relates to VA and transient voices (section 4.8.2): ”Producers commonly need
to add a ’one-off’ or short-lived audio-processing effect to a portion of musical material
on the timeline. However, typical abstraction mechanisms for managing effects processing
associate an effect with an entire voice [i.e. track]” Because this general association make
no sense in terms of the domain, it surfaces as various problems at the interaction level.
For instance, Duignan et al observed: ”To reliably manipulate, ’chop up,’ and seamlessly
move material across the timeline and to other tracks, our participants had to constantly
render their musical material and all its complex audio processing down to raw audio.”

50 4 DIGGING FOR SPECIFIC REQUIREMENTS

Requirement 27 (Direct Audio Processing) The tool should allow to conceptually
”apply” audio processing operations directly to audio material and composed objects.

We identify three reasons for this issue. One is the studio metaphor employed by
DAWs, which implies track recording and channel mixing. Another one is the stream-
based architecture of audio programming frameworks. Logic Pro, for instance, clearly
reflects the architecture of Apple’s Core Audio framework, which has established itself as
the framework for professional audio software.

In this regard, music interaction designers are confronted with the enormous challenge
to forget everything they know about real world practices and audio programming. Only
then, are they able to model this domain in a fresh, unbiased, user-centred way.

The third reason is the way this stream-based architecture demands and manages
processing power. One participant stated: ”The main thing that stops me from making
changes is usually just processing power. ... At a certain point, you need to bounce [render]
it down. Especially if you want to make changes that include creating new instruments
and effects.”

Requirement 28 (Scalable Audio Processing) The tool should always remain respon-
sive, so processing demand should not increase with musical complexity.

While track- and voice channels might be insufficient or improper targets for audio
processing operations, users still want to be able to apply a ”list” of several operations to
one object. ”Many producers engage in a constant process of creating new musical material
from complex and heavily processed sources and then radically editing and reprocessing
the end result. [...] modern DAWs do not support this.”

Requirement 29 (Rich Audio Processing) The tool should allow to apply several
audio operations in arbitrary order to any one raw audio- or composed object.

Multi-Level Audio Processing The fact that abstractions are needed but not sup-
ported forced participants to improvise and find work-arounds which ”led to a surprising
quantity of non-creative ’housekeeping’ overhead, such as archiving files, moving and
cleaning up project content, naming material, taking notes, bouncing [rendering] tracks,
and organizing library content.”

When they destructively rendered composed objects, their motivations ”were over-
whelmingly based on producers’ unsupported needs to create and manipulate higher-level
abstractions in their digital compositions, and their being forced to approximate these
abstractions by replacing various types of compositional material with concrete audio.”

Actually, users love to work with audio and appreciate when it is ”visualized in the
typical waveform view that producers find so important for precise editing.” But they

4.8 Requirements of Abstraction 51

don’t want to lose access to the structure of composed objects. This conflict harms their
flow experience: ”There is a fundamental tension between our participants desire to keep
their options open, and a forcing function to drive decision-making and forward progress
on the musical work as a whole.” Therefore, users ”need abstraction mechanisms that let
them feel they are working with the conceptual simplicity of raw audio, without actually
locking off their decisions permanently.”

The common ”feature” and practice of freezing tracks does not address this issue. Its
purpose is to save processing power. It neither lets the user work with the produced
audio, nor does it keep the details accessible. Also it must be managed manually since
users ”need to choose between locking down their options by rendering tracks to raw audio,
or using rigid ’freeze track’ functionality that temporarily suspends all user activity and
then prevents almost all editing capability until material is manually unfrozen.”

Requirement 30 (Visual Audio Processing) The tool should be able to visualise com-
posed and processed musical objects as waveforms, while keeping them open for editing.

Requirement 31 (Nondestructive Audio Processing) The tool should make audio pro-
cessing operations perfectly reversible. Any operation can independently be (re)moved.

The authors identify multi-level audio processing as one of the most important de-
sign challenges and point in the direction of a caching hierarchy: ”Future user-interface
designs could provide mechanisms to allow producers to hide this complexity and aggres-
sively cache rendered versions of processed material to allow full editing without real-time
processing overhead, and without visible dependencies on the timeline, while also allowing
this information to be accessed when needed.”

4.8.5 Reuse and Versioning Abstraction (RVA)

The Role of Preparation and Re-use As indicated by high-level TA, abstractions
are needed to enable preparation and reuse. Both steps are main ingredients of most cre-
ative processes and turn out to be particularly important in composition software, where
”composers are concerned with the creation of musical situations” [100] and ”composi-
tions were built up with a succession of ’kept’ ideas.” [19] Therefore, tools should provide
a way to store and reuse ideas [65].

The principle of preparation and re-use implicates the basic requirement that idea
generation, storage and production ought to be merged into one consistent working en-
vironment, which is not supported by any music software we came across: ”Given that
composition has been observed to be a non-linear process, with composers modifying ele-
ments of a composition or adding completely new ideas at late stages, the production of
two separate environments however integrated appears a flawed response.” [19]

For requirements of RVA, the reader might find it particularly helpful to imagine
software development as an analogy.

52 4 DIGGING FOR SPECIFIC REQUIREMENTS

Preparation Truman did a study with school children [99]. She demonstrated that
tasks can be structured in a way that encourages creative thinking. The study ”focused
on facilitating collaborative creativity in a music composition task.” One main result
was that ”preparation is a crucial element of the creative process” and that composition
software that supports this phase encourages more creative thinking.

Donin & Theureau [29] conducted an in-depth study of the long term creative cognition
of composition. They analysed a particular work of the french composer Philippe Leroux.
Therefor, they reconstructed his process from numerous sources including scores, emails,
software patches, project- and audio files, sketches, plans, manuscripts, screenshots and
extensive interviews. The composer used different types of software, most prominently
ProTools, Max/MSP and Patchwork (OpenMusic).

The authors’ acknowledgement of the ”extensive preparation phase” became a main
theme of their study. They emphasised that any music composition activity is at the
same time preparation and reuse. They pointed to ”the essential role of memorisation,
inscription, and re-reading” and revealed that preparation and reuse is just another side of
the explorative, iterative nature of music composition: ”This writing [composing] entails
a constant redefinition of the past: if there is a separation for the composer between the
preparation to writing and the writing itself, certain operations of preparation can be
redefined by him afterwards as having constituted the beginnings of writing.”

Requirement 32 (Preparation) The tool should provide a place to store currently
unused material and make this material the context of future work.

The Library Metaphor In the context of high-level TA, we noticed how the common
practice of storing material in ”project files” contradicts the creative process. Here, we
encounter another reason for that. The composer is free to never create some ”end prod-
uct” in the classic sense and, instead, develop a music repository by constantly adding
and recombining content. Nakakoji [76] observed that creative users ”take the view that
creative practice is a never-ending endeavor. Producing an artifact should not be re-
garded as a one-shot affair, but rather as formulating a growing experience engaging in
the development of creating generations of artifacts.”

Therefore, ”it is vital that material does not get locked up deep inside complex project
files. During the development of a project, producers also tend to build up a library of
material [...] there is often no place to put that material.” [34] Users need a space dedicated
to material that isn’t yet associated with a distinct ”goal,” ”project” or ”product.”

TA, idea sketching, preparation and re-use require the tool to present all material in
one integrated environment where different ideas can be seamlessly retrieved, reused and
combined. The storage paradigm must be updated from project folders in the operating
system to an idea database in the composition system. One study participant summarised:
”Ideally, we’d like to have every song we’ve ever done all loaded up into our show-load.” [34]

We notice that the library frequently comes up as the obvious metaphor for this re-
quirement. Composers wish to be supported in their ”reuse of material from a library of

4.8 Requirements of Abstraction 53

previously created musical resources” [34] and ”want to treat their entire archive of past
musical projects as a giant library of material.”

Requirement 33 (Global Reuse) The tool should enable access to- and seamless reuse
and combination of all previously created material through one integrated library.

Versioning Like the library metaphor, versioning is concerned with archiving and ac-
cessing previously created material. Support for the library metaphor would already
simplify and improve versioning. Coughlan & Johnson [19] stated in their 2nd require-
ment for composition support tools: ”One aspect of evaluation – and by extension further
ideation - is the comparison of ideas. Terry & Mynatt noted the importance of undo/redo
functionality to creative problem solving, and conceived a multi-state model that supports
comparison and design iteration using a single file.”

The specific emphasis here is on managing different versions of one musical entity
because ”management of distinct versions for backup and recall, at various granularities,
was a recurring issue.” [34] Unsurprisingly, ”current DAW abstraction mechanisms are
not generally well suited for this.”

Composers want to ”backup” different stages of a work process, not to sustain data but
to sustain ideas. We can view that as a need to develop different versions before deciding
on one, or as a need to go back to an older version to take it in a different direction. Both
views are equivalent.

Study participants were used to different workarounds. They emulated versioning
”with ’save as’ to archive state, stashing original material on muted tracks, and moving
entire arrangements or portions thereof to a ’dumping ground’ at the end of the timeline.”
Such practices are very common. Users have become insensible to how much they are
misusing a system that mistakes their needs.

Requirement 34 (Versioning) The tool should support creation, storage and recall
(including undo) of different versions for musical objects at all abstraction levels.

Referencing A library of material would be almost worthless- and versioning would be
impossible without some form of referencing. A reference links to an original. It often
works as a placeholder for- and representation of the original. Through references, one
piece of material can be used in many places and contexts. Editing the original effects
what all its references stand for.

The basic application of referencing is repetition: ”Music is predominantly built on
repetition and variation at many different levels, and therefore reuse (through copy and
paste or referencing) was common to all of the participants’ activity systems.” DAWs
allow to reference audio- and MIDI-regions. Some also provide a way to reference prebuilt
(Apple Logic Pro) or custom (Ableton Live) loops.

54 4 DIGGING FOR SPECIFIC REQUIREMENTS

Composition software doesn’t support the library working style, hence reference and
original must be in the same project file. Yet, the way these concepts are handled there is
still problematic. In DAWs, original regions sit on tracks, together with their references,
which confuses the distinction and introduces inconsistencies and warning messages to the
system. Objects on a track are considered musical events on a time line. Allowing original
material only to exist as an event on some time line makes no sense. ”One recurring
problem in these cases was that it could become difficult or impossible to understand the
dependencies between references and the original material.”

In some DAWs, like Logic Pro, audio referencing is handled a bit different than MIDI
referencing. There, original audio regions locate in a separate list, i.e. they don’t need
to consume time (visual: space) on a track just to exist, which is better for working with
audio but even less consistent as a whole. Furthermore, copying audio on the tracks of
such DAWs creates references while copying MIDI regions creates copies. Duignan et al
concluded: ”Clearly, these basic referencing abstraction mechanisms could be enhanced if
dependencies could be tracked and clearly visualized.”

Requirement 35 (Referencing) The tool should support references and repetition in
a consistent way that clearly conveys the distinction between reference and original.

Variation The idea to study interaction design of composition software came to us
out of frustration with such tools. Our very first step was to compile a list of common
problems, based on personal experience and intuition. The lack of support for variation,
as Duignan identified it, is not on this list because we believed it to be impossible to
provide with usability.

Variation introduces to composition software users what programmers know as inher-
itance. It combines versioning and referencing in the sense that a variation (child) is a
version that is defined relative to an original (parent), meaning that original and variant
are different but editing the original still effects the derived variant. An example would
be the ”repetition of material combined with changes and development over time.”

Duignan et al stated that ”DAWs provide only primitive abstraction mechanisms in
this regard,” but we find that this complex abstraction does not exist in composition
software. Duignan et al actually indicated why: ”At that point [after turning references
into copies to add variations], all references would be removed; the relationships between
blocks of theme and variation were no longer available.”

Still, the authors identified variation (specialisation) as one of the most important
design challenges: ”Future user-interface designs could better support reuse beyond copy
and paste by providing abstraction mechanisms that allow specialization of derived musical
material while automatically retaining the relationships between originals and successive
derivations.”

Requirement 36 (Variation) The tool should support theme and variation through
mechanics of inheritance or specialisation.

55

5 Conclusion

In this paper, we introduced our master subject and presented a comprehensive theoretic
foundation for designing music composition software. We provided a literature survey,
examined CSTs in general and music composition in particular, deeply investigated com-
position interfaces and extracted concrete requirements. Each of the 36 requirements that
we identified is backed by a broader theme that pervades many publications and different
research approaches, including user studies:

List of Requirements

1 Cognitive Styles . 31
2 Cognitive Dimensions . 34
3 Constraints . 35
4 Concentration . 36
5 Accessibility . 36
6 Mono-tasking . 37
7 Single Interaction Context . 37
8 Single Physical Mode . 38
9 Scalable Graphics . 38
10 Fluid Panning and Zooming . 39
11 Relative Mixing . 39
12 Complementarity . 40
13 Interchange . 40
14 Self-sufficiency . 41
15 Generality . 41
16 Emergent Exploration . 42
17 Interface Exploration . 42
18 Direct Exploration . 43
19 GCDCG-Sequencer . 45
20 Transient Voices . 46
21 Voice Groups . 46
22 Emergent Mix Groups . 46
23 Juxtaposability . 47
24 Groove . 48
25 Temporal Abstraction . 48
26 Liveness . 49
27 Direct Audio Processing . 50
28 Scalable Audio Processing . 50
29 Rich Audio Processing . 50
30 Visual Audio Processing . 51
31 Nondestructive Audio Processing . 51
32 Preparation . 52

56 5 CONCLUSION

33 Global Reuse . 53
34 Versioning . 53
35 Referencing . 54
36 Variation . 54

We also documented our methodology (section 1.2.2) and worked in accordance with
it. In those terms, we now have explicit initial criteria and are ready to start designing a
prototype.

With the help of Duignan et al [33, 32, 34], we identified the overwhelming need
for adding custom abstractions to linear sequencers (sections 3.3 and 4.8). Neither in
the literature nor in personal experience, have we encountered a graphical composition
software that integrates several custom abstraction levels in a seamless consistent manner.
Such a tool would make no principle difference between a note and a pattern, between
sampling and recording, between editing and arranging or between an instrument and an
orchestra.

Duignan et al hint to our next steps: ”More concrete sequencer interfaces [with pre-
determined abstractions] can be easier to design and implement, because there is no
requirement to carefully plan and build the conceptual model of the abstrac-
tion.” [33] This is consistent with our methodology (section 1.2.2) and innovation strategy
(section 4.2), therefore the subsequent master project will start with domain modelling.

As with all creative processes, the presented results are not set in stone. It is the
explicit goal of master project and -thesis to refine what we learned. In the words of
Shneiderman [94]:

”Sometimes your breakthrough will come when you go back and redefine the
problem itself.”

APPENDICES 57

Appendices

A) Principles of Music Interface Research & Development

Here, we provide further elaboration on our approach to research and development, which
acknowledges the role of intuition and has no explicit starting- or finishing step since all
stages develop concurrently over cyclic iterations.

What ”Antiquated” Means, Today The HCI community has abandoned the as-
sumption that user satisfaction, let alone innovation, can be derived from market-research
kind of analysis. We still feel the need to critically review [27, 83] two other ideas that
are (at least implicitly) frequently floated, for instance under terms like requirements- or
usability engineering [88]:

1. Interface design (and software development in general) can be ultimately rooted in
objective criteria and be conducted methodically without the need for intuition or
coincidence.

2. There exists a stage in a cyclic development model (like the spiral model, rapid
prototyping, iterative development) that is the optimal overall initial stage in every
context.

In the Beginning, there was Experience Explicated like this, Idea (1) is obviously
flawed. Especially in the context of HCI for creativity support, we don’t buy into the
idea that a scientific work starts with a concrete objective question that practically poses
itself and is then methodically answered, strictly based on validated theories [101]. The
very selection of the subject matter is subjective. It is also widely accepted that creative
high-level intuition plays an important role in design and implementation, as we discuss
in the context of creativity. Even requirements analysis and evaluation ultimately start
from intuitive impulses and are guided by common sense, intuition and personal taste
in the way they are conceptualised and conducted, which can heavily impact the out-
come [101]. We also have to acknowledge that intuition is accumulated experience that is
so diverse, interconnected and deeply embedded in the mind, that it is just hard to grab
with our consciousness. Linson [66] stated: ”While the idea of what is intuitive seems to
be universal, the reality is that intuition is a part of expertise.”

Then, there were Feedback Cycles Idea (2) is a relict of the waterfall model in
which everything starts with requirements analysis. That assumption snug into modern
cyclic models as well, although they ”allow” to even start with the implementation of a
prototype since they propose, by definition, no starting- or end point. Strictly speaking,
we cannot even tell which stage came first in practice. Was it really the prototype? Or
the design idea for the prototype? Or the analysis of previous software that led to the
idea? Or the implementation of previous software that led to its analysis?

Talking about digital music instrument design, Linson [66] emphasised that a metaphor
is just a description. It does not bind the interface to the analogy: ”The common mistake

58 APPENDICES

is the supposition that ’the rules used in the formalization of behaviour are the very same
rules which produce the behavior’.” In the same way, a software development model is not
an imperative. It’s purpose is not to simplify and linearise the real process it describes.
Modern development models increasingly embrace the fact that different stages naturally
inform each other.

Complexity Requires Flexibility Software development is often used as an analogy
for – and example of – creative musical processes [76]. Especially agile methods pose as a
”representative design practice in a knowledge-intensive domain.”

The principles of intuition, rapid iteration and emergence (exploration) apply strongly
to our research since music composition is not only a creative- but also a particularly
interlinked and complex domain. For example, Magnusson [68] pointed out the ”differ-
ence musical applications have from the ergonomically ’single-threaded’ or serial task-
processing applications used for painting, text editing, programming, video editing or in
architecture. In contrast to these applications, a music application is multi-threaded or
parallel, i.e. there are many processes, streams, layers or channels that run concurrently
in every composition or performance.”

B) Creativity and Collaboration

Collaborations can be distinguished by how synchronised they are in place and time,
which gives us the famous space-time matrix of collaboration. In the following, we’ll
explicate the special role of asynchronous remote collaboration (ARC) and how it relates
to creativity.

The Importance of ARC ARC is conceptually a generalisation of the other modes.
When people can collaborate at different times from different places, it means that they
can, in principle, collaborate at any time from any place. On the other hand, a tool for
collaborating at the same time or place, like a table top, does not automatically allow for
ARC.

Special collaboration modes lose their importance in practice. One significant purpose
of communication- and information technology is to bridge time and space. That tech-
nology is evolving at an exponential rate, which means that, relative to the other modes,
ARC is becoming cheaper every day. Also, the general demand for mobility is increasing.

The most basic requirement makes the fewest assumptions and, therefore, demands a
tool that works anywhere at anytime. Requirements for the special cases of identical time
or place should come as complementing additions on top of the general basis. We argue
that, sooner or later, ARC will be the the collaboration mode that is required by default.

Individual Contribution comes First Before people can combine their individual
contributions to build something bigger, they must be able to contribute something on
their own. This may not be true for each and every real world production scenario, but
it is true for creative processes.

APPENDICES 59

One reason is that those processes are more scalable. A young film maker can start out
producing short films all on his own. Later, he might grow into a more specialised role as
he participates in bigger collaborative projects. A band can improvise together because
each musician is able to improvise on his instrument. In group discussions, students tend
to quietly wait for each other for the fear of uttering inferior ideas. However, when they
have to do their own private brainstorming in beforehand and then take these individual
results as input for the group work, their collaboration suddenly thrives and everyone
participates. In whatever way we look at creative tasks, we have to acknowledge that
individual contribution is the precondition of collaboration.

In his classic ”The Humane Interface,” Jef Raskin [84] begins with the observation
that ”the design of single-user interfaces is not a solved problem.”

Creativity Requires Autonomy In the previous section we basically argued that
independence precedes interdependence. In creative work, this principle is even more
apparent [82]. Relative to the group effort, the individual effort plays a much more
prominent role in creative discovery than in clearly defined production procedures. The
composer is a good example. To him, collaboration is an exciting option but absolutely
not necessary to fulfil his role.

We might even argue that classic collaboration as a division of labour is contrary
to creativity. Division of labour restricts the work of each individual. In an orchestra,
musicians have no freedom to improvise because the orchestra is typically too large. They
must stick to the score in order to complement each other in a meaningful way. The score,
on the other hand, is the result of a much more autonomous and open process executed
by (typically one) composer. Creativity may be the source of classic collaboration but is
itself a more solitary endeavour.

The fact that ARC leaves the most autonomy to the individual creator makes it suit-
able for creative collaboration. Coughlan & Johnson [21] observed study participants
collaboratively composing music:

”This less synchronous form of collaborative production – enforced by the
constraints of the technological structure - provided scope for collaborators
to develop and individually evaluate ideas before sharing them. It offered
more control for each individuals focus, and although it may increase the time
taken to produce an outcome, it could be seen to have a positive rather than
a detrimental effect on the process.”

Preparation and Reuse Creative minds have always embraced ARC. Another reason,
besides the autonomy issue, is that ARC builds on preparation and reuse, which is an
essential aspect of the creative process. Artists, scientists, novelists, philosophers, engi-
neers, composers and the like build their work on top of what has been done before, at a
different time, in a different place. This is how wikipedia, stackexchange and github work.
It is also very apparent in popular music- and DJ culture where styles are emulated and
existing material is repeated, copied, varied, remixed, sampled and covered. Shneiderman
emphasised this point [94] as well as the importance of ARC for creativity [95].

60 APPENDICES

In the context of creative work, any result is provisional. Today, as we mostly create
and manipulate data and are connected to the web, CSTs are required to support intra-
and inter-project reusability of produced artefacts.

Preparation and Reuse is Creative Collaboration Preparation and reuse are cru-
cial to the individual composer because he constantly collaborates with past versions of
himself. Different creators basically collaborate the same way. That is one reason why
the distinction between individual and collaborative creativity is somehow superficial. A
clean integrated approach to preparation and reuse is also the foundation of sharing and
combining ideas in a group. Coughlan & Johnson [19] stated in their 5th requirement for
composition support tools :

”Fischer et al suggest an ’and’ not a ’versus’ relationship between individ-
ual and group creativity, and a kind of co-existence was observed: Group
composition sessions focused on ideas that collaborators had produced and in-
dividually evaluated as useful, producing emergent compositions utilising the
abilities of the entire group. Enabling the communication of ideas between
distanced collaborators is therefore potentially useful, but should respect in-
dividual space.” [19]

That is why the design approach that we propose may not only innovate the composition
process itself but also lay the foundation for subsequent work on collaborative composition.

C) Creator Experience

What is optimal creator experience as opposed to optimal user experience? Three per-
spectives on engagement might help to clarify the ultimate goal of CSTs.

Direct Manipulation

CST researchers rarely explicitly refer [97] to direct manipulation (DM), since it is a rather
basic, general, well known – and yet fuzzy – concept [41]. However, their design principles
and requirement themes demonstrate that DM is the one established interaction concept
that best matches the needs of CSTs. We identify the atomic properties of a DM interface:

1. The objects of interest are continuously represented.

2. Objects can be manipulated through actions.

3. The triggering of actions is simple and physical.

4. The effect of actions is incremental and reversible.

5. Changes of the objects are immediately visible.

6. Interface layers support initial- and long time learning.

APPENDICES 61

Working with external objects is common in creative domains. Hewett [51] explained
that creative professionals ”use tools such as drawing, making models, taking pictures,
producing or printing out intermediate results, etc. as a way of extending memory, a
way of self-education and experiment and as a way of communication with others.” He
concluded that ”the creation of a representation of a problem that is useful in thinking
about that problem may take forms other than that of mental imagery. Indeed, working
with objects in the world is a natural part of what many creative people do.”

The specific goal of DM that goes beyond usability is engagement [41], which is a
core characteristic of creative activity. However, it was also found that engaging low-
level manipulation should be balanced with efficient high-level conversational interaction,
which further suggests the use of abstractions to integrate these different levels.

Shneiderman personifies the intimate relationship between DM and CSTs, since he
coined both terms and is a leading researcher and advocate of both concepts.

Flow

The sort of engagement that creativity requires and DM supports is a universal mode of
experience – known in psychology as flow [23]. Flow gives us a more detailed picture of
the kind of user experience that we aim for. These are the seven features of flow plus its
precondition at number zero:

0. The ”user” is challenged but not overwhelmed

1. Clarity of goals and immediate feedback on progress

2. Complete concentration

3. Actions and awareness are merged

4. Losing awareness of oneself or [loosing] self-consciousness

5. Sense of control

6. Transformation of time

7. Activities are intrinsically rewarding

In HCI, flow is sometimes described as a certain fluidity of interaction. Claxton [18]
suggested that creative interaction is a process in which different aspects of a creation
are optimised in parallel (iteratively), resulting in an artful balance. As such, it requires
fluidity in switching those aspects and the possibility to evaluate the creation as a whole.
Elmqvist et al [37] explicitly ascribed the fluidity of an interface to DM and flow. From
a diverse set of applications, they derived eight design guidelines for fluid interactive
information visualisation.

Linson [66] described how learnability and DM (conceptual directness [41]) promote
flow: ”once we are able, we will be caught up or absorbed in performing with it [the
instrument]. In virtue of this absorption, the instrument itself will, at least at times,
phenomenologically ’withdraw’ or disappear from our immediate concerns.”

62 APPENDICES

Flow is fundamental to human experience and even posesses a spiritual quality. It
involves high awareness, extreme mono tasking and being in the moment. We know, at
least since it was made explicit, that flow promotes creativity – or may even just be a
different name for it [24]. CST researchers have acknowledged the necessity of engagement
and purposeful flow support [5, 51, 76, 101]. Hewett [51] summarised: ”If an individual
or group does not have a strong affective involvement with the problem to be solved and
believe in the importance of the work (cf. Csikszentmihalyi and Sawyer, 1995; Dunbar,
1995; Gruber, 1995) innovation is very unlikely to occur.”

Play

The precondition and features of flow form a compelling description of what it feels like to
play. And indeed, more than in CST research, flow is an explicit design goal and means
of reflection in the world of game design [89, 91, 96].

Shneiderman emphasised computer games as the best example of DM, which is often
described as enabling the user to play around with objects. Considering the definition of
DM, its connection to playing is also obvious.

Furthermore, playing is widely identified with creativity. A huge discourse evolved
around this identity, effecting philosophy, psychology, economics, design and other areas.
Einstein supposedly said: ”Play is the highest form of research.” And C.G. Jung even con-
nects play to direct manipulation: ”The creation of something new is not accomplished by
the intellect but by the play instinct acting from inner necessity. The creative mind plays
with the objects it loves.” We’re already used to the idea that creativity is a meaningful
form of playing. Yet, it is still notable that current research also arrives at this perspec-
tive [85, 87]. The same has been observed in music interface design, where interaction is
compared to playing [8] or the musical tool is depicted as a toy with which the composer
plays [42].

Game design is an overwhelming testimony of how playing intrinsically relates to flow,
DM and CST requirements. The most acclaimed and comprehensive work in this area is
the ”Book of Lenses” [91] by Jesse Schell. In chapter 3, he defined what makes a game.
We can just as well translate those properties to CSTs. There is something at stake since
games have goals and can be won and lost. They present a problem to be solved since they
have conflict and challenge. They provide intrinsic reward since they can create their own
internal value and engage players. And they are constrained since they have rules and
are closed, formal systems. Five summarising definitions portray playing as a pleasurable
problem solving activity that satisfies curiosity and involves the manipulation of objects.

Regarding interface design, ”lenses” 53-60 provide some advice that reflects DM and
supports flow [91]. Those eight principles are about control, physicality, virtuality, trans-
parency, feedback, juiciness, channels & dimension and modes. They also resemble
Raskin’s ”Humane Interface” [84]. The final principle, for instance, emphasises mode-
lessness. We found that the lack of integration of different modes is an urgent problem of
modern music composition software.

Supporting engagement lately culminated in the trend of gamification [28, 67, 81].
CSTs not only benefit from gamification but also have the potential to transform this trend

APPENDICES 63

that still rather narrowly emphasises competition, collaboration and collecting points.
There are aspects of playing that are quite specific to content creation and have yet to be
applied outside the world of games.

D) Framework for Mega-Creativity

This is Shneiderman’s framework [94] in his own words:

Collect Learn from previous works stored in libraries, on the Web, and other places

1. Searching and browsing digital libraries, the web, and other resources

2. Visualizing data and process to understand and discover relationships

Relate Consult with peers and mentors at early, middle, and late stages

3. Consulting with peers and mentors for intellectual and emotional support

Create Explore, compose, evaluate possible solutions

4. Thinking by free association to make new combinations of ideas

5. Exploring solutions – what-if tools and simulation models

6. Composing artifacts and performances step by step

7. Reviewing and replaying session histories to support reflection

Donate Disseminate the results and contribute to libraries, the Web, and other places

8. Disseminating results to gain recognition and add to the searchable resources

E) Design Principles for CSTs

Here, we summarise the design principles of Resnick et al [86] (that were co-authored
by Shniderman) and translate them into imperative form, while adopting the original
headings:

1. ”Support Exploration”
Make the tool ”self-revealing” so that users see what can be done (affordance). Make
it easy to quickly ”sketch out different alternatives at the early stages” The result
is ”not necessarily known at the outset”, so encourage the user to ”try out many
different alternatives” Enable try/fail cycles through ”a very good undo capability”
Realise ”low viscosity”, i.e. let the user ”change all aspects of the design.” Ease is
not enough, make it ”pleasurable and fun to use” Invest in the domain model and
design ”around the understanding of what representations users need to interact
with”

64 APPENDICES

2. ”Low Threshold, High Ceiling, and Wide Walls”
Provide a low threshold, i.e. ”make it easy for novices to get started” Make sure
the interface doesn’t intimidate. Give users ”immediate confidence that they can
succeed.” Provide a high ceiling, i.e. enable ”experts to work on increasingly sophis-
ticated projects” Make the tool ”powerful” enough to create ”complete solutions”
Provide wide walls, i.e. tools that ”support and suggest a wide range of explo-
rations” and thereby encourage users ”to work on projects that grow out of their
own interests and passions” Give them ”a space to explore, not a collection of specific
activities” and let them learn to combine ”very general primitives” Balance simplic-
ity (constraints, low threshold) with power (high ceiling) and generality (flexibility,
wide walls).

3. ”Support Many Paths and Many Styles”
Support different ways of perception, thinking and problem solving. Mind the ”sim-
ilarities and differences between ’left brain’ (logical, analytical) and ’right brain’
(holistic, intuitive) thinkers.” But don’t assume all creative users to be ”right-
brainers”

4. ”Support Collaboration”
Let each user exploit his own talent in contributing to collaboration. Support ”a
community of users to share their creations, and the tricks and techniques they have
discovered for using the tools”

5. ”Support Open Interchange”
Design with setups in mind that ”orchestrate a variety of tools each of which supports
part of the task” Create tools that ”seamlessly interoperate with other tools” Use
open, well defined, widely spread, simple data formats. Consider the ”increasing
pervasiveness of XML” Allow to ”easily import and export data from conventional
tools such as spreadsheets [and] word processors” Make the tool extensible, for
example through a ”plug-in architecture” or ”open data model”

6. ”Make It As Simple As Possible - and Maybe Even Simpler”
Realise that marketing, ”creeping featurism”, the pride of professionals and a partial
understanding of human needs are making tools evermore complex. Know that
”what initially seems like a constraint or limitation can, in fact, foster new forms of
creativity.” Strive for radical simplicity. To let the user experience simplicity, offer
him ”the simplest ways to do the most complex things.”

7. ”Choose Black Boxes Carefully”
Carefully decide on what are ”the ’primitive elements’ that users will manipulate”
because they determine the (lowest) abstraction level and the nature of the tool.
Balance ease of use with flexibility by regulating the level of abstraction.

8. ”Invent Things That You Would Want To Use Yourself”
Build tools that you ”enjoy using” because ”this approach is, ultimately, more re-
spectful to users” Design with a community in mind where the success of the tool

APPENDICES 65

emerges from people sharing ”their expertise and experiences with one another”
Don’t impose anything on the user that you wouldn’t like yourself.

9. ”Balance user suggestions, with observation and participatory processes”
Balance user involvement in development because ”there are dangers to too little
or too much involvement” since users aren’t necessarily aware of limits, possibili-
ties, high-level concepts or factors of experience embedded in an interface. Only
give control to users when it ”really makes a difference in their experiences” Con-
sider observing ”users interacting with prototypes” and infer their needs from their
actions.

10. ”Iterate, Iterate - Then Iterate Again”
Design by iteratively developing prototypes. Iterate rapidly, possibly on a daily
basis, i.e. ”iterate just enough to do the next test” Use prototypes as ”conversation
starters”

11. ”Design for Designers”
Provide users ”with a simple set of parts with which they can design and create
a diverse collection of constructions” The tool should not only ”engage users in
composing artifacts, but also encourage (and support) them to explore the ideas un-
derlying their constructions.” Let users sketch ideas by drawing with their hands to
support their ”creative reflection” and ”reflection-in-action” Consider hand-drawing
even in ”non-diagramic domains, such as writing and movie-compositions” using
”two-dimensional spatial positioning as a representation”

12. ”Evaluation of Tools”
Be creative in evaluating the tool because ”It is still an open question how to measure
the extent to which a tool fosters creative thinking.”

F) Basic Principles of Musical Structure

Patterns in Sound Music is a special kind of sound that is intentionally structured
and draws on simple audible patterns. Because sound is a time based signal, all these
patterns are forms of repetition. On the macro level, very significant sound events are
repeated few times with possibly long periods in between:

”In the context of musical composition, the term ’macroscopic view’ means to
grab the whole of the musical piece being composed or to grab the relationship
among the pieces (phrases) the composer has composed.” [2]

The micro level is quite the opposite. There, insignificant events are repeated many
times in short intervals. The shorter the time periods between repetitions become, the
more precisely do our ears compare their lengths. At a certain point, we become very
sensitive to stable frequencies, meaning that we quickly recognise the kind of repetition
that not only replays the same sound event but also keeps the intervals at a constant
duration.

66 APPENDICES

A sound being played exactly every 600ms is almost instantly recognised as a ”beat”
and easily processed cognitively. We quickly habituate ourselves to the ongoing occurrence
and cling to its regularity. Patterns of this type are the basis of rhythm.

When the frequency further increases, it passes an important threshold where the
sound events are repeated too fast to be recognised separately. At about 10Hz and above,
they collapse into single waves, and the obvious form of repetition turns into the less
obvious one that we perceive as tone. Patterns of this type are the basis of harmony.
Vaggione [100] distinguished micro and macro-level at the point where tones emerge:

”Composers are now intervening not only at the macro-time domain (which
can be defined as the time domain standing above the level of the ’note’), but
they are also intervening at the micro-time domain (which can be defined as
the time domain standing within the ’note’) (Vaggione 1998).”

Harmonics In theory, the waves of a single physical oscillation follow the shape of a
sine function. We can easily create this purest of all sounds with a computer. However, we
will notice that it sounds artificial, like the beep of an electronic device. This is because,
in nature, a tonal sound emerges as the sum of many oscillations at different frequencies.

For instance, when a piano key is struck, a little hammer hits a string and makes
it oscillate at its eigenfrequency. This frequency is also called fundamental frequency or
pitch or even key. It determines whether we perceive the tone as high or low and realises
its harmonic function in a piece of music.

In addition to the pitch, the string and the whole instrument also resonate with higher
frequencies. We can think of them as eigenfrequencies of lower order. They produce the
overtones. Their specific intensity spectrum is greatly responsible for the piano sounding
like a piano, it adds ”sound colour” to the tone.

The nature of overtones is also the foundation of musical harmony, so let’s look at
them some more. There is no principle difference between the fundamental tone and the
overtones. They all are the partials or harmonics of a tonal sound. The first harmonic
is the fundamental tone. Its frequency f realises the pitch (key). The second harmonic
creates the first overtone at frequency 2f . The third harmonic creates the second overtone
at frequency 3f , and so on. With increasing frequency, the intensity (loudness) of these
harmonics generally drops, so the pitch (key) dominates perception.

Overtone frequencies are multiples of the fundamental frequency because these mul-
tiples resonate well with it. This physical fact can be generalised: The least common
multiple of normalised frequency ratios indicates how well frequencies resonate with each
other. The smaller the LCM, the better do they harmonise.

As an example take X = 200Hz, Y = 250Hz and Z = 300Hz. Then, X : Y : Z =
1 : 1.25 : 1.5. Normalisation means that the smallest frequency is scaled to 1.0, so two
pairwise indicators would be LCM(1, 1.25) = 5 and LCM(1, 1.5) = 3, which tell us that
X harmonises better with Z than with Y . In terms of the western tonal system, the
fundamental harmonises better with the quint than with the major third.

APPENDICES 67

The 12-Tone System We assume the western twelve-tone equal temperament system
(12TET), which is an approved compromise between practical needs and physical reality.
It fully respects only the first overtone, which has two times the frequency of the funda-
mental. For every tone in the system, there is one with double the frequency and another
one with half the frequency, only limited by what frequencies we’re able to perceive.

In between these big intervals, additional tones are inserted in such a way that still all
pairs of neighbouring tones (keys, pitches) exhibit the same frequency ratio. It turned out
that a number of 11 intermediate steps approximates other important overtones particu-
larly well. Therefore, moving one tone up always increases the frequency by factor 12

√
2

so that moving 12 tones up doubles the frequency.
The most important consequence of that system is that any piece of tonal music can

be transposed, meaning that it can be played high or low, starting at any arbitrary key,
while all its intervals remain the same.

To define the frequencies for all tones in the system, we only need to define it for one,
the others are then implicated. By convention, this fixed frequency is typically 440Hz.

The 1 : 2 interval between fundamental and first overtone, in which the 12TET is
anchored, is of exceptional importance. It is the simplest and most harmonious interval.
In contrast to the remaining overtones, the first one is particularly hard to distinguish
from the fundamental. Both involved tones sound so similar that they are often considered
as being equivalent, particularly regarding harmonic functions. Mathematically, we get a
ring of 12 equivalence classes. Occasionally, we speak as if only 12 tones existed in the
12TET.

G) A Taxonomy of Composition Software

This is how Duignan et al [33] classified composition software (sequencers):

1. Textual- vs. Graphical Mode:

(a) Textual: ”Music programmers” use powerful, flexible, domain-specific pro-
gramming languages.

(b) Graphical: Graphics and text enable direct manipulation and many of its ben-
efits (learnability, visibility, directness, engagement, retention, feedback, explo-
ration, simplicity, affordance).

2. Predetermined- vs. Custom Abstractions:

(a) Predetermined: Basic abstractions like notes and audio clips ensure minimal
conceptual overhead and few hidden dependencies.

(b) Custom: Users apply ”classification, grouping, and hierarchy to hide and reuse
details” because ”a well designed and implemented set of customisable higher-
level abstractions can add considerably to the power of a music application.”

3. Eager- vs. Delayed Linearisation:

68 APPENDICES

(a) Eager: Material ”must be placed into an absolute position in the single canoni-
cal linear ordering of the piece” reducing complexity and ”cognitive overhead.”

(b) Delayed: Linear ordering is determined late, spontaneous or ”live”, encouraging
exploration by ”rapid auditioning of various linearisations.”

4. Data- vs. Control Flow:

(a) Data: Processing units transform data flows, enabling sound generation and
effects and also conveying the details of a complex system.

(b) Control: Like with a score, users sequence music in terms of an order of events,
including repetition.

5. Special- vs. General Purpose:

(a) Special: The tool is ”dominated by underlying assumptions and structure that
favours one form of musical structuring over all others.”

(b) General: Users engage in any type of music sequencing, and are able to create
a wide range of musical styles.

H) Submappings of the Architectural Metaphor

Mark Johnson [57] listed the following submappings for the MUSIC IS ARCHITECTURE
metaphor:

Source Domain Target Domain
Structure or building Piece of music
Process of Construction Building to climax, etc.
Span Interval
Vertical spatial dimension Interval size
Vertical spacing Registral spacing
Horizontal spatial dimension Temporal duration
Horizontal spacing Rhythm
Structure vs. ornament Structure vs. ornament
Foundation Underlying structure
Supporting members Stable harmonic or formal elements
Pillars Pillars of harmony
Support harmonic or contrapuntal ”support”
Passage Musical Passage
Arch Melodic arch or arch form
Base Bass voice, base of melodic action
Bridge Bridge (passage or section)
Physical forces Musical forces
Balance Processive and formal balance
Symmetry Symmetry in pitches or durations

APPENDICES 69

I) Composition vs. Instrument

The Continuum The vast majority of literature about musical creativity actually ne-
glects composition. Instead, it focuses on instrument-centred tasks like sound design,
performance and improvisation. In contrast to those tasks, composition fosters intel-
lectual creativity way more effectively. It goes beyond practise and improvisation by
combining their outputs to build something bigger, involving conscious decision making
in the process.

Because music notation decouples editing activity from musical time, it ”allows for
greater flexibility with regards to usability, expression, and the support of experimenta-
tion.” [79] The continuum between editing and performing also maps to abstraction levels:
”While the more composition-oriented musicians will tend to the macro-level idea, others
will favour the more performance-oriented micro-level one, and some will try to find an
uncertain equilibrium between both conceptions.” [60]

Magnusson and Mendieta [70] conducted a qualitative study on how users relate to
acoustic and digital instruments. They acknowledged a principle difference and continuum
between working creatively and providing the tools for it. Instrument-centred tasks are
not on the creative end of the spectrum because instruments provide a means for the
composition. They often only have value in the context of the composition by which
they are applied since ”each instrument tends to be made for a specific and not general
purpose. The power to be able to store conceptual structures in the tool itself renders it
more specific and unique for a certain musical piece or performance and less adaptive for
other situations.”

The study clearly indicates that computers cannot replace real instruments, but are
naturally suited to support abstract intellectual tasks like composing: ”people were con-
cerned with the arbitrary mappings in digital instruments. There are no ’natural’ map-
pings between the exertion of bodily energy and the resulting sound. One participant
described digital instruments as more of a mind/brain endeavour.” The authors noticed
that ”with computer technology the voice is too broad to get to know it thoroughly.”

The Confusion Publications on composition are rare enough but a negligent use of
terms throughout the literature makes them even harder to find. There is a tendency to
equate tool with instrument, which is problematic in this context. Pen and paper may be
tools of the composer but they’re most often not tools in the sense of musical instruments.

Originally, instrument wasn’t a musical term. It stems from the latin instrumentum
which is an implement or tool. This shows how the real world domain of music creation
is itself tool-centred. Musician’s interactions are conceptually indirect [41] because they
don’t directly act on musical content. One study participant [70] elaborated:

”When playing an acoustic instrument, you are constantly referring to scales,
styles, conventions, traditions and cliches that the instrument and the culture
around it imposes on you. A musician can just play those conventions in
autopilot without having to THINK at all. It’s easy and unchallenging.” [70]

It can be argued that, from a composer’s point of view, engaging in playing one specific
instrument is to get lost in a detail and miss the big picture that is relevant. Since

70 APPENDICES

hundreds of years, music is about instruments as sound generators. Today, technology
has taken that to the extreme. It is long overdue to use technology to put high-level
musical structure back in the focus of music composition.

Furthermore, many authors apply the term composition to any process that produces
some kind of musical output, including instrument-centred activities. This partly results
from the fact that music software increasingly determines how the domain is perceived and
how its language is used. For example, Fiebrink et al [42] talked a lot about composition
and noticed how it is under-represented in research. Yet, at the same time, their study
was based on the models, capabilities, affordances and assumptions of their academic
Wekinator software, which is mainly concerned with sound synthesis, artificial creativity
and controller mappings.

The study indicates that not all composers can adapt to such a narrow notion of com-
position as one of all seven ”expressed a disconnect between this approach to composition
and her work: I just don’t ever think ’spread sheet’ or ’data set’ when I’m creating work
and this may be because my work is usually simultaneously conceptual and narrative.”
As discussed earlier, we also understand composition as a more conceptual time related
process.

Another example is McNichol’s 2012 publication [74], which, according to its title,
focuses on composing. McNichol reported some specific tools that they developed with
Max/MSP as a response to the devastating status quo. It speaks volumes of the blind
spot that we try to narrow down that these tools have ultimately nothing to do with
composition but are clearly made for sound processing and -manipulation.

The Connection Although, a composition support tool solves a different problem, it is
often also regarded as a musical instrument. In order to not get confused, it is important
to clearly see what a composition tool shares with a musical instrument. Which aspects
of ”liveness” can we translate to composition?

First, we can learn from traditional instruments that the imperatives of transparency
and direct manipulation have to embrace the fact that ”the interaction instrument itself
(the software) equally becomes [the] object of interest, i.e. the domain object.” [8, 68]

The second lesson is that music interfaces, like real instruments, have to be learned.
Their design needs not to shy away from complexity [66] and allow the user to develop
virtuosity. Musicians are particularly aware of that [8]. Bertelsen et al [8] also argued
that HCI has hidden the ”mediatedness” of interaction ”under the transparency ideal.”
Accordingly, ”transparency is often perceived as a passé concept in much contemporary
literature.”

A (musical) tool doesn’t have a specific inherent goal but is dedicated to creativity.
It is made to be used with effort, intention, imagination and curiosity. To expect less
from its user would at best mean to bore him – and in the worst case to insult him. In
short, it would contradict user-centred design, or as Drummond [30] put it: ”In all of the
definitions discussed, to some degree, is the notion that interactive [music] systems require
interaction to realise the compositional structures and potentials encoded in the system.”

Eventually, the tool naturally transforms into an instrument as it is learned and
adapted to specific processes and goals [44]. The value of a tool is its generality, but

REFERENCES 71

its instrument-aspect thrives on specific practice.
The third and most important commonality between a composition tool and an instru-

ment is how composition involves, to some degree, ”playing” around with musical content
in a non-linear way, since ”interactive [music] systems make possible a way of composing
that at the same time is both performing and improvising.” [30]

Tools that tend towards the centre of the continuum are often called ”composed instru-
ments” [42], which can, of course, border on confusion, as we have exemplified with this
particular study. Furthermore, the authors explicitly settled for an ambiguous language
as they did ”avoid a strict differentiation between composition, instrument building, and
improvisation.”

The existence of hybrids certainly does not supersede the principle difference between
performing with an instrument and composing music, but it reminds us that a composition
tool should incorporate concepts like delayed linearisation [33], progressive evaluation [79]
and temporal abstraction [34]. Duignan et al [34] noticed a ”blurred relationship between
composition and performance” and found that ”modern DAWs embody a strong division
between live performance and composition (Théberge 1997), which is largely a result of
the post-production multitrack-mixing-based history of these tools.” Study participants
struggled with this distinction because ”DAWs typically lacked the ability to rapidly move
between performance-style composing (...) and more calculated, editing-style composing.”
We elaborate on this in the context of temporal abstractions (4.8.3).

References

[1] Dictionary of American Idioms and Phrasal Verbs. The McGraw-Hill Companies,
Inc., 2002.

[2] S. Amitani and K. Hori. Supporting musical composition by externalizing the com-
poser’s mental space. In Proceedings of the 4th Conference on Creativity & Cogni-
tion, C&C ’02, pages 165–172, New York, NY, USA, 2002. ACM.

[3] K. Ankney. Alternative representations for music composition. Visions of Research
in Music Education, 20, January 2012.

[4] D. L. Baggi and G. M. Haus. Music Navigation and Interaction with Symbols and
Layers: From Binary Audio to Interactive Musical Forms. IEEE Computer Society
Press, 2013.

[5] J. L. Baher and B. Westerman. The usability of creativity: experts v. novices. In
Proceedings of the seventh ACM conference on Creativity and cognition, C&C
’09, pages 351–352, New York, NY, USA, 2009. ACM.

[6] M. Beaudouin-Lafon. Designing interaction, not interfaces. In Proceedings of the
Working Conference on Advanced Visual Interfaces, AVI ’04, pages 15–22, New
York, NY, USA, 2004. ACM.

72 REFERENCES

[7] D. Benyon and M. Imaz. Metaphors and models: Conceptual foundations of repre-
sentations in interactive systems development. Hum.-Comput. Interact., 14(1):159–
189, Mar. 1999.

[8] O. W. Bertelsen, M. Breinbjerg, and S. Pold. Instrumentness for creativity media-
tion, materiality & metonymy. In Proceedings of the 6th ACM SIGCHI Conference
on Creativity & Cognition, C&C ’07, pages 233–242, New York, NY, USA, 2007.
ACM.

[9] A. Bevans. Investigating the effects of bimanual multitouch interaction on creativity.
In Proceedings of the 8th ACM conference on Creativity and cognition, C&C
’11, pages 451–452, New York, NY, USA, 2011. ACM.

[10] N. Bonnardel. Creativity in design activities: the role of analogies in a constrained
cognitive environment. In Proceedings of the 3rd conference on Creativity & cogni-
tion, C&C ’99, pages 158–165, New York, NY, USA, 1999. ACM.

[11] C. Brower. A cognitive theory of musical meaning. Journal of Music Theory,
44(2):323 – 379, 2000.

[12] A. Bruns. Produsage. In Proceedings of the 6th ACM SIGCHI conference on Cre-
ativity & cognition, C&C ’07, pages 99–106, New York, NY, USA, 2007. ACM.

[13] J. Bullock and L. Coccioli. Towards a humane graphical user interface for live
electronic music. In Proceedings of the International Conference on New Interfaces
for Musical Expression, pages 266–267, 2009.

[14] L. Candy and E. Edmonds. Introducing creativity to cognition. In Proceedings of
the 3rd conference on Creativity & cognition, C&C ’99, pages 3–6, New York, NY,
USA, 1999. ACM.

[15] L. Candy and E. A. Edmonds. Supporting the creative user: a criteria-based ap-
proach to interaction design. Design Studies, 18(2):185 – 194, 1997.

[16] L. Candy and K. Hori. The digital muse: Hci in support of creativity: ”creativity
and cognition” comes of age: towards a new discipline. interactions, 10(4):44–54,
2003.

[17] J. Carter, B. Eaglestone, N. Ford, and P. Holdridge. An analysis of interviews with
composers from a cognitive styles perspective. In International Computer Music
Conference, pages 391–394, Ann Arbor, MI, 2009. International Computer Music
Association, MPublishing, University of Michigan Library.

[18] G. Claxton. Creative-mindedness: when technology helps and when it hinders. In
Proceedings of the 8th ACM conference on Creativity and cognition, C&C ’11,
pages 1–2, New York, NY, USA, 2011. ACM.

REFERENCES 73

[19] T. Coughlan and P. Johnson. Interaction in creative tasks: Ideation, representation
and evaluation in composition. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’06, pages 531–540, New York, NY, USA, 2006.
ACM.

[20] T. Coughlan and P. Johnson. Constrain yourselves: exploring end user development
in support for musical creativity. In Proceedings of the 6th ACM SIGCHI Conference
on Creativity & Cognition, C&C ’07, pages 247–248, New York, NY, USA, 2007.
ACM.

[21] T. Coughlan and P. Johnson. Understanding productive, structural and longitudinal
interactions in the design of tools for creative activities. In Proceedings of the seventh
ACM conference on Creativity and cognition, C&C ’09, pages 155–164, New
York, NY, USA, 2009. ACM.

[22] D. Cronin. Feature: Into the groove: lessons from the desktop music revolution.
Interactions, 15(3):72–78, 2008.

[23] M. Csikszentmihalyi. Flow. Harper Perennial, 1991.

[24] M. Csikszentmihalyi. Creativity: Flow and the Psychology of Discovery and Inven-
tion. Harper Perennial, 1997.

[25] A. Damle and T. Miller. Influence of design tools on conceptually driven processes.
In Proceedings of the 8th ACM conference on Creativity and cognition, C&C
’11, pages 327–328, New York, NY, USA, 2011. ACM.

[26] S. B. Davis and M. Moar. The amateur creator. In Proceedings of the 5th conference
on Creativity & cognition, C&C ’05, pages 158–165, New York, NY, USA, 2005.
ACM.

[27] T. DeMarco. Software engineering: An idea whose time has come and gone? IEEE
Software, 26(4):96–95, 2009.

[28] S. Deterding. Gamification: designing for motivation. interactions, 19(4):14–17,
July 2012.

[29] N. Donin and J. Theureau. Theoretical and methodological issues related to long
term creative cognition: the case of musical composition. Cogn. Technol. Work,
9(4):233–251, 2007.

[30] J. Drummond. Understanding interactive systems. Org. Sound, 14(2):124–133, Aug.
2009.

[31] H. Dubberly. Cover story: Toward a model of innovation. Interactions, 15(1):28–36,
2008.

[32] M. Duignan. Computer mediated music production: A study of abstraction and
activity. PhD thesis, Victoria University of Wellington, 2008.

74 REFERENCES

[33] M. Duignan, J. Noble, and R. Biddle. A taxonomy of sequencer user-interfaces. In
International Computer Music Conference. Ann Arbor, MI: MPublishing, University
of Michigan Library, 2005.

[34] M. Duignan, J. Noble, and R. Biddle. Abstraction and activity in computer-
mediated music production. Computer Music Journal, 34(4):22–33, 2010.

[35] M. Dunlop. Mobilehci series. http://personal.cis.strath.ac.uk/mark.dunlop/
mobilehci/, February 2014.

[36] B. Eaglestone, N. Ford, P. Holdridge, J. Carter, and C. Upton. Cognitive styles and
computer-based creativity support systems: Two linked studies of electro-acoustic
music composers. In Computer Music Modeling and Retrieval. Sense of Sounds,
volume 4969 of Lecture Notes in Computer Science, pages 74–97. Springer Berlin
Heidelberg, 2008.

[37] N. Elmqvist, A. Vande Moere, H.-C. Jetter, D. Cernea, H. Reiterer, and T. J.
Jankun-Kelly. Fluid interaction for information visualization. Information Visual-
ization, 10(4):327–340, 2011.

[38] S. Emmerson. Music – imagination - technology. In International Computer Music
Conference, pages 365–372, Ann Arbor, MI, 2011. International Computer Music
Association, MPublishing, University of Michigan Library.

[39] Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[40] S. Fels and M. Lyons. Interaction and music technology. In P. Campos, N. Graham,
J. Jorge, N. Nunes, P. Palanque, and M. Winckler, editors, Human-Computer In-
teraction – INTERACT 2011, volume 6949 of Lecture Notes in Computer Science,
pages 691–692. Springer Berlin Heidelberg, 2011.

[41] S. Fichtner. Direct manipulation. Seminar: Theories and Models in HCI, http:
//hailbringer.com/writings/dm_seminar_paper.pdf, 2013.

[42] R. Fiebrink, D. Trueman, C. Britt, M. Nagai, K. Kaczmarek, M. Early, M. Daniel,
and A. Hege. Toward understanding human-computer interaction in composing the
instrument. In International Computer Music Conference, pages 135–142, Ann Ar-
bor, MI, 2010. International Computer Music Association, MPublishing, University
of Michigan Library.

[43] L. Gabora. Cognitive mechanisms underlying the creative process. In Proceedings
of the 4th conference on Creativity & cognition, C&C ’02, pages 126–133, New York,
NY, USA, 2002. ACM.

[44] M. Gall and N. Breeze. Music composition lessons: the multimodal affordances of
technology. Educational Review, 57(4):415–433, 2005.

http://personal.cis.strath.ac.uk/mark.dunlop/mobilehci/
http://personal.cis.strath.ac.uk/mark.dunlop/mobilehci/
http://hailbringer.com/writings/dm_seminar_paper.pdf
http://hailbringer.com/writings/dm_seminar_paper.pdf

REFERENCES 75

[45] L. Gaye, L. E. Holmquist, F. Behrendt, and A. Tanaka. Mobile music technology:
Report on an emerging community. In Proceedings of the International Conference
on New Interfaces for Musical Expression, pages 22–25, 2006.

[46] M. Geyer and F. Felske. Consumer toy or corporate tool: the ipad enters the
workplace. interactions, 18(4):45–49, July 2011.

[47] T. R. G. Green and M. Petre. Usability analysis of visual programming environ-
ments: a ‘cognitive dimensions’ framework. JOURNAL OF VISUAL LANGUAGES
AND COMPUTING, 7:131–174, 1996.

[48] M. Gurevich. Editor’s notes. Computer Music Journal, 34(4):4–5, 2014/02/18 2010.

[49] L. Hallnäs and J. Redström. From use to presence: On the expressions and aesthetics
of everyday computational things. ACM Trans. Comput.-Hum. Interact., 9(2):106–
124, June 2002.

[50] C. Hannon. Feature: As we may speak: Metaphors, conceptual blends, and usability.
Interactions, 16(3):16–19, May 2009.

[51] T. T. Hewett. Informing the design of computer-based environments to support
creativity. International Journal of Human-Computer Studies, 63:383 – 409, 2005.

[52] S. Holland, K. Wilkie, A. Bouwer, M. Dalgleish, and P. Mulholland. Whole body
interaction in abstract domains. In D. England, editor, Whole Body Interaction,
Human-Computer Interaction Series, pages 19–34. Springer Verlag, London, U.K.,
2011.

[53] S. Holland, K. Wilkie, P. Mulholland, and A. Seago. Music interaction: Under-
standing music and human-computer interaction. In Music and Human-Computer
Interaction, Springer Series on Cultural Computing, pages 1–28. Springer London,
2013.

[54] J. F. Hoorn. A model for information technologies that can be creative. In Proceed-
ings of the 4th conference on Creativity & cognition, C&C ’02, pages 186–191, New
York, NY, USA, 2002. ACM.

[55] A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[56] A. Jandausch. Conceptual metaphor theory and the conceptualization of music. In
International Conference of Students of Systematic Musicology, volume 5, 2012.

[57] M. Johnson and S. Larson. Architectural Metaphors in Music Discourse and Music
Analysis, volume 50 of Yearbook of Comparative and General Literature: Mutabil-
ity. Architecture, Music and the Chicago School, pages 141 – 154. Bloomington:
University of Indiana Press, 2002.

76 REFERENCES

[58] M. L. Johnson and S. Larson. ”something in the way she moves”-metaphors of
musical motion. Metaphor and Symbol, 18(2):63–84, 2003.

[59] A. Johnston. Beyond evaluation: Linking practice and theory in new musical inter-
face design. In Proceedings of the International Conference on New Interfaces for
Musical Expression, pages 280–283, 2011.

[60] S. Jordà. New musical interfaces and new music-making paradigms. In Proceedings
of the International Conference on New Interfaces for Musical Expression, pages
46–50, 2001.

[61] S. Kiyokawa, Y. Washida, K. Ueda, and E. Peng. Relationship between the diversity
of information and idea generation. In Proceedings of the seventh ACM conference
on Creativity and cognition, C&C ’09, pages 385–386, New York, NY, USA,
2009. ACM.

[62] C. L. Krumhansl and L. L. Cuddy. A theory of tonal hierarchies in music. In
M. Riess Jones, R. R. Fay, and A. N. Popper, editors, Music Perception, volume 36
of Springer Handbook of Auditory Research, pages 51–87. Springer New York, 2010.

[63] G. Lakoff. Metaphor and Thought, chapter 11: The Contemporary Theory of
Metaphor, pages 202 – 251. Cambridge University Press, 2nd edition, 1992.

[64] F. Lerdahl and R. Jackendoff. A Generative Theory of Tonal Music. MIT Press
series on cognitive theory and mental representation. MIT Press, 1983.

[65] T.-C. Li. Who or what is making the music: music creation in a machine age. In
Proceedings of the 3rd Conference on Creativity & Cognition, C&C ’99, pages 57–62,
New York, NY, USA, 1999. ACM.

[66] A. Linson. Unnecessary constraints: A challenge to some assumptions of digital
musical instrument design. In International Computer Music Conference, pages 421–
424, Ann Arbor, MI, 2011. International Computer Music Association, MPublishing,
University of Michigan Library.

[67] Y. Liu, T. Alexandrova, and T. Nakajima. Gamifying intelligent environments.
In Proceedings of the 2011 international ACM workshop on Ubiquitous meta user
interfaces, Ubi-MUI ’11, pages 7–12, New York, NY, USA, 2011. ACM.

[68] T. Magnusson. Screen-based musical interfaces as semiotic machines. In Proceedings
of the International Conference on New Interfaces for Musical Expression, pages
162–167, 2006.

[69] T. Magnusson. Designing constraints: Composing and performing with digital mu-
sical systems. Computer Music Journal, 34(4):62–73, 2010.

[70] T. Magnusson and E. H. Mendieta. The acoustic, the digital and the body : A
survey on musical instruments. In Proceedings of the International Conference on
New Interfaces for Musical Expression, pages 94–99, 2007.

REFERENCES 77

[71] G. Mazzola. Elemente der Musikinformatik. Birkhäuser Verlag, 2006.

[72] G. Mazzola. Musical Creativity: Strategies and Tools in Composition and Improvi-
sation. Computational Music Science. Springer-Verlag Berlin Heidelberg, 2011.

[73] A. McNichol. Technology and creativity in the classroom:an opportunity missed?
In International Computer Music Conference, pages 522–525, Ann Arbor, MI, 2010.
International Computer Music Association, MPublishing, University of Michigan
Library.

[74] A. McNichol. Modern technology and creativity: An approach to composing at 11-
14 years. In International Computer Music Conference, pages 277–280, Ann Arbor,
MI, 2012. International Computer Music Association, MPublishing, University of
Michigan Library.

[75] C. Mota. The rise of personal fabrication. In Proceedings of the 8th ACM conference
on Creativity and cognition, C&C ’11, pages 279–288, New York, NY, USA,
2011. ACM.

[76] K. Nakakoji. Seven issues for creativity support tool researchers. In B. Shneiderman,
G. Fischer, M. Czerwinski, B. Myers, and M. Resnick, editors, NSF Workshop
Report on Creativity Support Tools, pages 67 – 71. National Science Foundation,
Washington, DC, 2005.

[77] C. Nash. Supporting Virtuosity and Flow in Computer Music. PhD thesis, University
of Cambridge, 2011.

[78] C. Nash and A. Blackwell. Tracking virtuosity and flow in computer music. In
International Computer Music Conference, pages 575–582, Ann Arbor, MI, 2011.
International Computer Music Association, MPublishing, University of Michigan
Library.

[79] C. Nash and A. Blackwell. Liveness and flow in notation use. In Proceedings of the
International Conference on New Interfaces for Musical Expression, Ann Arbor, MI,
2012. University of Michigan.

[80] A. Oulasvirta. The fragmentation of attention in mobile interaction, and what to
do with it. interactions, 12(6):16–18, 2005.

[81] P. Palanque, R. Bernhaupt, F. Montesano, and C. Martinie. Exploiting gaming
research and practice for engineering interactive critical systems. In Proceedings
of the 1st International Conference on Application and Theory of Automation in
Command and Control Systems, ATACCS ’11, pages 41–49. IRIT Press, 2011.

[82] D. Pink. Drive: The Surprising Truth about what Motivates Us. Canongate, 2011.

[83] P. Ralph. The illusion of requirements in software development. Requirements
Engineering, 18(3):293–296, 2013.

78 REFERENCES

[84] J. Raskin. The Humane Interface: New Directions for Designing Interactive Sys-
tems. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

[85] M. Resnick. All i really need to know (about creative thinking) i learned (by study-
ing how children learn) in kindergarten. In Proceedings of the 6th ACM SIGCHI
conference on Creativity & cognition, C&C ’07, pages 1–6, New York, NY, USA,
2007. ACM.

[86] M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R. Pausch, T. Selker, and
M. Eisenberg. Design principles for tools to support creative thinking. In B. Shnei-
derman, G. Fischer, M. Czerwinski, B. Myers, and M. Resnick, editors, NSF Work-
shop Report on Creativity Support Tools, pages 25 – 39. National Science Foundation,
Washington, DC, 2005.

[87] D. Rosen. Spielraum: play, chance and creativity across disciplines. In Proceedings of
the 8th ACM conference on Creativity and cognition, C&C ’11, pages 387–388,
New York, NY, USA, 2011. ACM.

[88] M. B. Rosson and J. M. Carroll. Usability Engineering: Scenario-based Development
of Human-computer Interaction. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

[89] K. Salen and E. Zimmerman. Rules of Play: Game Design Fundamentals. MIT
Press, 2004.

[90] R. Sawyer. Creativity in performance. Publications in creativity research. Ablex,
1997.

[91] J. Schell. The Art of Game Design: A Book of Lenses. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

[92] B. Shneiderman. User interfaces for creativity support tools. In Proceedings of the
3rd conference on Creativity & cognition, C&C ’99, pages 15–22, New York, NY,
USA, 1999. ACM.

[93] B. Shneiderman. Creativity support tools: a tutorial overview. In Proceedings of
the 4th conference on Creativity & cognition, C&C ’02, pages 1–2, New York, NY,
USA, 2002. ACM.

[94] B. Shneiderman. Leonardo’s Laptop: Human Needs and the New Computing Tech-
nologies. MIT Press, 2003.

[95] B. Shneiderman. Creativity support tools: Accelerating discovery and innovation.
Commun. ACM, 50(12):20–32, Dec. 2007.

[96] T. Sylvester. Designing Games: A Guide to Engineering Experiences. O’Reilly
Media, Incorporated, 2013.

REFERENCES 79

[97] M. Terry and E. D. Mynatt. Recognizing creative needs in user interface design. In
Proceedings of the 4th conference on Creativity & cognition, C&C ’02, pages 38–44,
New York, NY, USA, 2002. ACM.

[98] C. P. Treadaway. Hand e-craft: an investigation into hand use in digital creative
practice. In Proceedings of the seventh ACM conference on Creativity and cognition,
C&C ’09, pages 185–194, New York, NY, USA, 2009. ACM.

[99] S. M. Truman. An exploration of creativity in school children’s music composition:
study, software and framework. In Proceedings of the 8th ACM conference on Cre-
ativity and cognition, C&C ’11, pages 395–396, New York, NY, USA, 2011.
ACM.

[100] H. Vaggione. Some ontological remarks about music composition processes. Com-
puter Music Journal, 25(1):54–61, 2001.

[101] V. Weiley and E. Edmonds. The hci researcher as artist and designer: approaches
to creativity and distance. In Proceedings of the 8th ACM conference on Creativity
and cognition, C&C ’11, pages 233–238, New York, NY, USA, 2011. ACM.

[102] K. Wilkie, S. Holland, and P. Mulholland. Analysis of conceptual metaphors to
improve music software: the role of prior experience in inclusive music interaction.
In British Computer Society HCI Conference, 2009.

[103] K. Wilkie, S. Holland, and P. Mulholland. Evaluating musical software using concep-
tual metaphors. In Proceedings of the 23rd British HCI Group Annual Conference
on People and Computers: Celebrating People and Technology, BCS-HCI ’09, pages
232–237, Swinton, UK, UK, 2009. British Computer Society.

[104] K. Wilkie, S. Holland, and P. Mulholland. What can the language of musicians tell
us about music interaction design? Computer Music Journal, 34(4):34–48, 2010.

[105] K. Wilkie, S. Holland, and P. Mulholland. We can work it out: towards a partic-
ipatory approach to designing music interactions. In When Words Fail: What can
Music Interaction tell us about HCI?, 2011.

[106] K. Wilkie, S. Holland, and P. Mulholland. Towards a participatory approach for
interaction design based on conceptual metaphor theory: A case study from music
interaction. In S. Holland, K. Wilkie, P. Mulholland, and A. Seago, editors, Music
and Human-Computer Interaction, Springer Series on Cultural Computing, pages
259–270. Springer London, 2013.

[107] L. M. Zbikowski. Conceptual models and cross-domain mapping: New perspectives
on theories of music and hierarchy. Journal of Music Theory, 41(2):193 – 225, 1997.

	Introduction
	HCI and Music Composition
	About this Master Subject
	Basic Goal and Approach
	Methodology
	Potential Contributions

	About this Master Seminar Paper

	Creativity as a Principle Requirement
	A Renaissance
	The Challenge
	Frameworks for Support
	Requirement Themes
	Simplicity
	Exploration
	Reuse
	Abstraction

	Music Composition as an Application Domain
	Musical Structure
	Composers and their Context
	Traditional Composition Software

	Digging for Specific Requirements
	The Status Quo: DAWs and Linear Sequencers
	The Innovation Strategy: DDID
	What We Dare to Know: Conceptual Metaphors
	Composition in Perspective: The Big Dualism
	Composition vs. Decomposition
	Cognitive Styles
	Conditions of Flow

	Requirements of Simplicity
	Focused Functionality
	Focused Attention
	Managing the Environment
	Managing the Tool
	Managing Physical Interaction
	Concrete Simplicity

	Requirements of Freedom
	Openness
	Generality

	Requirements of Exploration
	Reconciling Simplicity and Freedom
	Learnability through Exploration
	Meaningful Exploration

	Requirements of Abstraction
	The Role of Abstraction
	Voice Abstraction (VA)
	Temporal Abstraction (TA)
	Process Abstraction (PA)
	Reuse and Versioning Abstraction (RVA)

	Conclusion
	Appendices
	A) Principles of Music Interface Research & Development
	B) Creativity and Collaboration
	C) Creator Experience
	D) Framework for Mega-Creativity
	E) Design Principles for CSTs
	F) Basic Principles of Musical Structure
	G) A Taxonomy of Composition Software
	H) Submappings of the Architectural Metaphor
	I) Composition vs. Instrument

	References

