
Interaction Design

for Mobile Music Composition

Master Thesis

by

Sebastian Fichtner
Universität
Konstanz

Universität
Konstanz

Universität
Konstanz

Konstanz University

Faculty of Computer- and Information Science

Departmant of Human-Computer Interaction

Prof. Dr. Harald Reiterer

Konstanz, 2015

II

Contents

1 Introduction 1

1.1 Seminar . 2

1.2 Project . 4

1.3 About this Work . 7

2 Design Concept 9

2.1 Basics . 9

2.1.1 Parts . 10

2.1.2 Voices . 11

2.1.3 Performances . 12

2.1.4 Events . 14

2.1.5 Loops . 17

2.2 Navigation . 22

2.2.1 Navigating Down . 22

2.2.2 Navigating Up . 25

2.3 Graph Editor . 26

2.3.1 Adding . 28

2.3.2 Ungrouping . 29

2.3.3 Removing . 29

2.3.4 Deleting . 29

2.3.5 Repositioning . 30

2.4 Event Editor . 30

2.4.1 Panning . 30

III

2.4.2 Zooming in . 31

2.4.3 Zooming in on a Part or Voice 31

2.4.4 Zooming out . 32

2.4.5 Adding an Event . 34

2.4.6 Deleting an Event . 35

3 Evaluation 37

3.1 Methodology . 37

3.2 User Study . 38

3.3 How the Participants Usually Work 45

3.3.1 The Process and how it Relates to Software 45

3.3.2 Accessing and Re-using Material 45

3.3.3 Input and Instruments 46

3.3.4 Handling Temporal Structure 46

3.3.5 Using the Software . 47

3.4 From Requirements to Design 47

3.4.1 Requirements of Abstraction 49

3.4.2 Requirements of Simplicity 54

3.4.3 Requirements of Freedom 56

3.4.4 Requirements of Exploration 57

3.4.5 Summing Up . 58

3.5 From Design to User Experience 60

3.5.1 Event Editor . 60

3.5.2 Graphical Representation 62

3.5.3 Understanding the Domain Model 63

3.5.4 Parts and Temporal Structure 64

3.5.5 Global Events . 66

3.5.6 Loops and Variation 67

3.5.7 Input and Integration with other Software 69

3.5.8 Limitations . 70

IV

4 Discussion 73

4.1 On the Validity of our Evaluation 73

4.2 Creative Applications . 74

4.3 Refining Requirements and Design 76

4.3.1 Mobility . 76

4.3.2 Event Editor . 77

4.3.3 Graph Editor . 79

4.3.4 Parts . 80

4.3.5 Atomic Parts and Quantization 81

4.3.6 Parts and Scores . 82

4.3.7 Musical Length . 83

4.3.8 Composed Scores . 84

4.3.9 Global Events . 86

4.3.10 Loops and Variation 87

4.4 Lessons for CSTs . 88

4.4.1 CST Design . 88

4.4.2 CST Research . 89

5 Conclusion 91

5.1 Summary . 91

5.2 Outlook . 92

Bibliography 95

Appendix 101

V

VI

Abstract

In this master thesis, we investigate a possibly innovative interaction con-

cept for a music composition tool on tablets. We present a prototype that

communicates a novel domain model that we had prepared and introduced

through previous works [17, 18, 19]. Further, we report from a study of the

prototype that we conducted with users of music sequencer software and in-

terpret the produced qualitative data in terms of our design. We are able

to derive valuable insights into the user group, its working practices, our

particular design and CST design in general. We are also able to refine the

requirements on which our design is based and initiate a re-design based on

the study results.

VII

VIII

Chapter 1

Introduction

Our drive to create meaning distinguishes us from animals and machines. It

is what makes us human. To help people create meaning is to help them

express their true nature as human beings. And that may be the most noble

purpose to which software can ever be applied. That is why we dedicated our

master subject to the development of software tools for creativity support.

Creativity-support tools (CSTs) depend, like hardly any other type of

software, on the art and science of Human-Computer Interaction (HCI). The

interaction design of CSTs is a distinct area within HCI research and the

primary scientific context for this thesis.

As our concrete application domain, we chose music composition. It

offers a perspective on CST design that the HCI community seldom picks

up. The frame of reference for research and innovation in this field are

digital audio workstations (DAWs) like Apple Logic Pro, Ableton Live and

Avid ProTools. The core metaphor of this type of software is the classic

recording studio in which producers and sound engineers monitor, record

and mix some musician’s (semi-)live performance.

DAWs originally served producers and the recording- and mixing process.

They did not target musicians or the composition process. In that sense, they

apply to the technical- rather than the creative side of music making.

Musicians and composers have adapted to this situation and accepted

1

2 CHAPTER 1. INTRODUCTION

DAWs as the standard. And DAWs themselves continue in their attempt

to cover all aspects of music making and to please everyone. However, they

never overcame the mismatch between their core metaphor and the creative

process. To address exactly that mismatch is our motivation for this work.

The preceding seminar [19] and project [18] set the context for this thesis

at hand. The seminar in particular is quite extensive and allows us to intro-

duce our subject in rather broad strokes. In the following, we’ll summarize

both previous works.

1.1 Seminar

In the master seminar [19], we identified requirements for audio- and music

composition software. We distilled those requirements from a large body of

scientific literature from HCI, computer music, musicology and psychology.

In the past decades, a particularly interesting field of research grew at the

intersection of HCI and computer music [8, 16, 20, 22].

We are confident that these literature-based requirements express a true

need and potential market gap. Not only do they heavily overlap with our

personal experience from years of music software use, but most of the related

works are also based on user studies.

We identified four broad themes that pervade research results on inter-

action design for music composition. They serve as categories for our 36

requirements:

1. Simplicity

2. Freedom

3. Exploration

4. Abstraction

These categories roughly reflect the needs that CSTs in general need

to support. The abstraction category, however, emerged as a particularly

1.1. SEMINAR 3

important aspect of music composition tools. We’ll get back to the exact

abstraction requirements in a moment.

The works of Duignan et al. [11, 12, 13] became the center of our interest

because they specifically asked how DAWs fail to support the composition

process, and they investigated this question in a profound way.

Duignan et al. [12] started from a bird’s eye view that allowed them to

develop a taxonomy of music composition (or sequencing-) software. Based

on their taxonomy, they identified a type of sequencer that would be ideal for

creative users but is practically non-existent for it is a unique combination

of characteristics:

1. Graphical Mode (rather than textual mode)

2. Custom Abstractions (rather than predetermined abstractions)

3. Delayed Linearization (rather than eager linearization)

4. Control Flow (rather than data flow)

5. General Purpose (rather than special purpose)

We might roughly describe the ”GCDCG-Sequencer” as a classic DAW

enhanced by more live performance capabilities (delayed linearization) and

custom abstractions. Related works support the idea that this sequencer

type would better serve creativity in music making, for instance research on

the preconditions of flow in composition software [29, 30, 31] or the prevalent

cognitive styles of composers [5, 14].

As we laid out in the seminar, custom abstractions are a precondition of

delayed linearization. When the user wants to define live (on the fly) which

parts of a piece of music are being played next, some abstract notion of a

”part” must exist in the composition tool.

Custom abstractions are much more fundamental than delayed lineariza-

tion, and when they are made more available, capabilities of delayed lineariza-

tion automatically increase as well. So, an essential step towards innovation

4 CHAPTER 1. INTRODUCTION

of composition interfaces would be to add custom abstractions to the kind

of graphical control flow sequencers that is the centre of traditional DAWs.

Duignan and his colleagues realized this need and initially stated they

were developing such a GCDCG-Sequencer [12], but they never published

the result. Instead, Matthew Duignan [11] dedicated his PhD thesis to a

deeper assessment of the exact shortcomings of DAWs for music composi-

tion. Based on a user study with 17 participants, he revealed how a lack of

custom abstractions in DAWs profoundly disrupts the creative flow of the

composition process. In a summarizing paper, Duignan et al. [13] stated:

”This framework helps us understand and clearly identify issues

that need to be resolved in the next generation of DAW user

interfaces.”

And this is were the story ended. Although this framework is a milestone,

no one has, yet, taken the next step and put it into practice in order to design

this ”next generation of DAW user interfaces”. One reason may be that there

are many diverse issues to be resolved, and some of the implied requirements

are conflicting or, at least, not trivial to align with one another. Through

our master project and -thesis, we pick up where Duignan et al. left off and

hope to add another chapter to the story.

1.2 Project

The master project was actually a long process going through countless iter-

ations of contemplation, sketching and implementation. We provided a sim-

plified and streamlined description of that process in the project paper [18].

Here, we briefly summarize its challenges and results.

Early on in the seminar, we learned that if we take this seriously and strive

for real innovation, we have to acknowledge that interaction design involves

more than cosmetics and goes deeper than interface design. We have to

rebuild the interface of sequencing software from its core, starting with the

1.2. PROJECT 5

conceptual model of composed music that it ultimately communicates to the

user. Therefore, the most important result of the project is neither code nor

mockups but a domain model that is in line with the requirements.

So, how did we approach those requirements? In the master project, we

were able to narrow them down to four core requirements. We also implicitly

attended to Requirement #19, which expresses our rather general premise.

A sequencer that satisfies those five can easily be extended to satisfy most

of the other 31 requirements later on:

#19 GCDCG-Sequencer : The tool’s sequencer type should be: graphical

mode, custom abstractions, delayed linearization, control flow and gen-

eral purpose [12].

#21 Voice Groups : The tool should support multi-level voice groups. Groups

should act as voices, including their representation, editing, reuse and

so forth.

#25 Temporal Abstraction: The tool should provide multi-level temporal

abstraction for sequencing and composing musical objects at all tem-

poral scopes.

#32 Preparation: The tool should provide a place to store currently unused

material and make this material the context of future work.

#33 Global Reuse: The tool should enable access to- and seamless reuse and

combination of all previously created material through one integrated

library.

Basically, we want to allow the user to recursively build voice- and tempo-

ral abstractions and to freely store, reuse and combine those musical objects

from within the composition tool. For graphical sequencers, this would add a

radically new concept and empower the user in unimaginable ways. However,

the groundwork for that already turned out to be far from trivial.

6 CHAPTER 1. INTRODUCTION

Figure (1.1) depicts our domain model as a simple class dependence di-

agram. Because we keep model and actual implementation congruent, the

diagram reflects both.

Voice

Score
Library

Part
Library

Voice
Library

Music Library

Event

Part Score

Performance

Domain Logic

Audio Source Protocol

Audio
Library

Audio
Data

Audio Player
Protocol

Figure 1.1: Overview of the domain model as a dependence diagram

A major break through of domain modeling was the realization that we

have to strictly decouple voice- and temporal abstractions, and that forced

us to abandon the central role and conventional notion of a composition. In

our model, there is no distinct composition entity. Instead, we have a Per-

formance that is of a much more fleeting nature. It is an ad-hoc combination

(current user selection) of a temporal abstraction (part) and a voice abstrac-

tion (voice). We’ll illustrate the musical meaning of those entities when we

introduce our design approach.

As another result of seminar and project, we decided on tablets as our

target platform. Compared to conventional systems, the mobility, touch in-

teraction and simplicity of tablets promises to be a far better match for

1.3. ABOUT THIS WORK 7

today’s users, creativity-support tools, music creators and many of our par-

ticular requirements. At the same time, tablets offer more screen space than

smart phones, and this larger canvas is crucial for creative content produc-

tion.

The direction in which the requirements point us and the mobility and

pragmatic minimalism that tablets promote amplify each other. And that

synergy may bring about the next generation of music sequencers and CSTs.

A more general and simple domain model not only supports a more cre-

ative process but also allows us to mediate that process through the relatively

small screen of a tablet. And the tablet itself is a wonderful constraint that

forces us to design for the focus and mono-tasking that creative work requires.

A convention of sequencer software that we adapt in only slightly gen-

eralized form is the 2-dimensional ”editing plane” that distinguishes voices

(sounds) on one axis and time on the other. This is were the user actually

arranges musical events. We had to bring this basic building block to the

tablet before we could add the higher level navigation and editing of custom

abstractions.

As it turned out, ”translating” the simple editing of events for different

sounds in time from the desktop to the tablet required much more sensitivity,

experimentation and implementation effort than we imagined. The project

ultimately focused on that very step.

1.3 About this Work

For this thesis, we developed our design concept further and complemented

our implementation with in-screen mockups. In the next chapter, we’ll

demonstrate the concept as a whole, using screen shots in conjunction with

mockups.

In Chapter 3, we will review our overall methodology, explain the eval-

uation method that we applied and present the results of our evaluation

process.

8 CHAPTER 1. INTRODUCTION

In Chapter 4, we will discuss, interpret and (as far as possible) generalize

the results of our evaluation. We will also present how we advanced our

concept based on what we learned from those results.

And finally, Chapter 5 will discuss the limitations of our contribution and

the directions future research and development should take.

Chapter 2

Design Concept

Our frame of reference for explaining our Human-Audio Interaction Lab

(HAIL) is Apple’s GarageBand. GarageBand is the most commonly used

music software on tablets and perfectly represents DAWs on that smaller

platform.

We occasionally compare HAIL to the sequencer component of Garage-

Band in order to explain what we do differently than conventional sequencers

and why those differences might be beneficial. In the project [18], we already

used GarageBand to illustrate the starting point of our design process. For

a more detailed introduction to GarageBand on the iPad, see Apple’s online

guide at http://help.apple.com/garageband/ipad.

2.1 Basics

We laid out the development of our domain model in the project paper, but

we want to give an even more concise and understandable explanation of the

results because they are the foundation of all that follows and because we

advanced model and design for this thesis.

9

10 CHAPTER 2. DESIGN CONCEPT

2.1.1 Parts

Parts represent time intervals that may have a specific meaning to the com-

poser. A part may be a symphony, a song, a new idea, a verse, a chorus, a

bridge, just a single bar or any other temporal abstraction. Such categories

or labels are not innate to the domain model but are arbitrary meanings

assigned by the composer. The composer might express how he thinks of a

certain part by naming it.

Figure (2.1) illustrates how the composer may label different parts and

how he might relate them to each other.

Song

Hook

Project

Intro Verse Hook Chorus

Part Library

Figure 2.1: Example composition of parts

A part may just be a list of other parts. For example, there may be a

part named Project which is made of the list <Intro, Hook, Verse, Hook>.

We sometimes call this type of part a Composed Part or a Part Group.

Composed parts can list (reference) other parts multiple times, just like

Project references Hook at two positions in its list. It is also possible that

different composed parts ”share” one or more parts, just like Project and

Song both make use of Verse.

Composed parts may reference other composed parts, and there is no

principle limit to the depth of recursion. However, it is impossible for a com-

posed part to reference itself, neither directly nor through other references.

What we get is a directed acyclic graph (DAG) of parts, so we’ll often

speak of Nodes, Children or Ancestors to describe our domain model. We’ll

2.1. BASICS 11

also use the terms super- and sub-nodes or super- and sub-parts as synonyms

for parents and children.

The only part that necessarily pre-exists is what we call the Part Library.

The part library is the default parent of all parts that would, otherwise,

be roots themselves. Therefore, there is always exactly one global root or

”source” in the part graph.

2.1.2 Voices

Voices represent sounds that can be played. A voice may be a piano key, a

vocal recording, a drum hit, some arbitrary noise, some sampler instrument, a

band, a whole orchestra or any other abstraction of this kind. Like with parts,

such labels don’t come from the domain model itself but are attributions

made by the composer, which is the whole point of custom abstractions.

How the composer can relate voices to each other is totally analog to

parts. Figure (2.2) shows an example graph of voices.

Snare

Voice Library

C ...

Drums Vocals

Base Lead Back

Piano

D

Figure 2.2: Example composition of voices

In the example, the user has already attached images to five voices. This

12 CHAPTER 2. DESIGN CONCEPT

should also help the reader to understand the figures in this work and relate

mockups to the voice graph.

2.1.3 Performances

A Performance is a combination of one part with one voice. Any combina-

tion of a node from Figure (2.1) with a node from Figure (2.2) would make

a performance. Figure (2.3) shows the performance <Part Library, Voice

Library> and how it looks in the prototype.

At any time, the main view of the interface displays exactly one per-

formance. Sometimes, we call it the ”current” performance since the user

ultimately determines which performance is being displayed.

A performance associates exactly one voice with one part, but the content

that interests the user relates to the corresponding sub-nodes, i.e. the direct

children of that voice and part. In Figure (2.3), we see two sub-parts and

three sub-voices.

These sub-parts and sub-voices identify a matrix (dashed lines in the

diagram) that we call the Score Matrix. The interface presents the current

performance and its score matrix as a table in which columns represent sub-

parts and rows represent sub-voices, similar to a spread sheet.

This 2-dimensional representation in which voices or keys are mapped to

the vertical- and time is mapped to the horizontal axis is not just a design

convention that pervades all kinds of music notation systems and interfaces,

it also roots in image schemas and the conceptual metaphors that people uni-

versally apply to make sense of music [3, 24, 25, 39]. Of course, we find that

in GarageBand as well [18]. Since this convention is also the defining princi-

ple of traditional score notation, we are safe to assume that any composer is

familiar with it.

2.1. BASICS 13

Voice LibraryDrums

Vocals

Part Library

Project Song

Piano

P R O J E C T S O N G

Figure 2.3: The performance <Part Library, Voice Library> as a diagram

and in the prototype

14 CHAPTER 2. DESIGN CONCEPT

So, our Score Matrix itself is nothing new. The addition that we offer is

that the user can choose the level of detail or abstraction that the matrix

represents in either of both dimensions. Thereby, we not only make temporal

abstractions available to the user as explicit objects but also let him integrate

all previously created material into his process. In Figure (2.3), for example,

we see an overview of all material in the library and, through the score

matrix, the interfaces provides clues about where the actual content sits.

We’ll elaborate on that content in the following section.

2.1.4 Events

The basic principle of how musical content is modeled, visualized and edited

is trivial and an innate part of the design convention that we explained in

the previous section. In common DAWs, the most prominent manifestations

of that convention are the piano roll editor and the arranger. In the former,

content is made of ”notes”. In the latter, content is made of ”regions”. In the

project paper [18], we described what those terms mean and how we merged

both contexts into one. As a result, our model doesn’t distinguish notes and

regions but only knows Events.

Like a note or a region, an Event associates a certain time interval with

a certain voice. It means that, during the interval, the voice actively plays.

As a result of making parts explicit and treating them as an analog to

voices, events cannot stretch across multiple sub-parts in the current perfor-

mance. In terms of the score matrix, each event locates within the confines

of one cell. Of course, there can be a whole list of events in a single cell.

However, Requirements #21 and #25 demand that we make this notion

of events work on all abstraction levels, and that is an essential challenge to

which we provided no real solution in the project paper.

The question we had to answer is: What is the meaning of events as

they relate to composed (grouped) voices and parts? The answer had to

be applicable to all levels. From an event that plays one piano key to an

event that plays a whole orchestra. From an event that relates to a bar of 4

2.1. BASICS 15

beats to an event that relates to a whole song. The user should be able to

arrange the large-scale structure of a symphony the same way he edits the

single notes (events) of the first violin. We decided to start with the simplest

answer that could possibly work:

1. An event that relates to a voice group triggers, by default, all the sub-

voices in the group. The sub-voices ”inherit” the ”incoming” event and

play in unison over its exact time interval.

2. A composed part translates incoming events into events for its sub-parts

so that those sub-part events still cover the exact same time interval

that the incoming event covers.

However, to really be able to employ composed voices in a musically

meaningful way, there must also be the option that a composed voice may

apply a more sophisticated interpretation to an incoming event than just

forwarding the event to all sub-voices.

So, if the sub-voices of a voice group have there own event lists in the part

in which the group is triggered, these event lists are played by the sub-voices

in place of the incoming event.

While all this may sound cumbersome in words, it’s actually the most

natural and intuitive interpretation of ”global” events in the context of our

domain and in terms of using the interface.

Let’s look at our example. In Figure (2.3), we see two events one which

relates to the Song and the Drums. At the position within the Song at which

the event begins, the Drums start playing. We know from the voice-graph

in Figure (2.2), that the Drums are composed of Base and Snare, so when

our event plays (triggers) the Drums, actually Base and Snare play. What

exactly Base and Snare play in the Song is determined by their respective

event lists in the Song and those can be seen in the score matrix of the

performance <Part-Library, Drums> as displayed by Figure (2.4).

In Figure (2.5), on the other hand, we see how the global drum event is

”split in two” and passed on to the parts Verse and Chorus. Those ”inher-

16 CHAPTER 2. DESIGN CONCEPT

Drums
Snare

Base

Part Library

Project Song

P R O J E C T S O N G

Figure 2.4: The performance <Part Library, Drums> as a diagram and in

the prototype

2.1. BASICS 17

ited” events that actually are defined on higher abstraction levels are just

implied on lower levels and cannot be edited there, which is why they are

pictured darker. They are also in the background and can’t actually collide

the events on those lower levels.

2.1.5 Loops

The previous section and Figure (2.4) may have provoked this question: Why

are there only two events (beats) defined for Base and Snare over the whole

duration of the song? Also, the audio preview in Figure (2.3) clearly suggests

that there is more going on in the drums during the event that plays them

in the Song.

This has to do with the role that the Score Matrix plays in our model.

Figures (2.5) and (2.6) display two more performances from our example.

The meaning of the events in all figures will be clear, after we revisited the

Score Matrix in more depth.

The event list that a score matrix cell ”contains” can be shorter than

the original length of the associated part (column). In that case the system

understands that the list is supposed to be repeated (looped) to ”fill up”

the whole part. To make these shorter lists editable without zooming, the

interface graphically scales them to the whole width of the cell (column, part).

Of course that also has disadvantages and the user might ultimately need a

way to switch to a ”real time” view in which the time scales of all cells are

comparable and all repetitions of a loop are visible. But for communicating

the concept, this loop centered view is sufficient.

Our simple looping mechanism provides multiple benefits:

1. It obviously gives a lot more meaning to events that relate to voice

groups.

2. It reflects a rhythmical and repetitional aspect of music that parts

alone can’t express. Repetition occurs on different scales, depending

on voice and part. That means, within the same part, one voice might

18 CHAPTER 2. DESIGN CONCEPT

repeat a long segment only a few times, while another might repeat a

short segment many times. This cannot be modeled with hierarchically

segregated parts because their partitioning of the time axis applies

across all voices.

3. It lets the user exploit the hierarchical nature of rhythm, reducing

redundancy in the music notation and, thereby, increasing the efficiency

(practical directness) of interaction.

4. As a side effect, it introduces an elegant form of variation. In our

example, a drum loop is defined on the whole song and that loop is

then extended (varied) in the chorus because the chorus defines its

own loop that happens to be of the same length (Figure 2.6). In the

seminar, we still thought this to be the most difficult requirement to

satisfy.

The combination of part-graph and looping makes a powerful tool. Re-

member that, in one and the same part, different voices can loop event lists of

different lengths, and these loops can add up to complex rhythmic patterns

(polyrhythms).

Concerning events, there’s one detail left to mention. Those events for

Base and Snare in the Song (Figure 2.4) make up a short loop that is repeated

throughout the song. Now, we saw in Figure (2.3), that the global Drums-

event begins playing the drums some time into the Song. No matter where

that global event would exactly start, the drum loop would always start

playing from the start of its own definition, that is: on the base beat.

Ultimately, it was necessary to make event editing consistent between

atomic and composed voices. An event for an atomic voice like a single

piano key must directly represent the corresponding audio being played from

the exact position of the event.

Again, this doesn’t lend itself well to verbal description and may all sound

complicated but should feel very natural when using the interface. Users ex-

pect voices to start playing exactly where events start. They don’t expect

2.1. BASICS 19

the second Drums-event to just turn on a ”channel” that is already playing

something at this point. This principle is in line with traditional score no-

tation as well as with sequencing software. It provides even more benefits

together with loops, as we’ll see in the next section.

In the following, we’ll describe how certain tasks are performed in the

prototype, starting with navigating through part- and voice graphs and then

proceeding with graph- and event editing.

20 CHAPTER 2. DESIGN CONCEPT

Voice LibraryDrums

Vocals

Song

Verse Chorus

Piano

V E R S E C H O R U S

Figure 2.5: The performance <Song, Voice Library> as a diagram and in

the prototype

2.1. BASICS 21

Drums
Snare

Base

Song

Verse Chorus

V E R S E C H O R U S

Figure 2.6: The performance <Song, Drums> as a diagram and in the pro-

totype

22 CHAPTER 2. DESIGN CONCEPT

2.2 Navigation

We have two types of nodes: Parts are temporal abstractions and represent

time intervals. Voice abstractions refer to some sound. Here, atomic voices

refer to single audio files and, consequently, composed voices (voice groups)

refer to a set of audio files. When we talk of a node and don’t specify it

further, it might be atomic or composed.

The user can build DAGs of both of these abstractions. And we try to

treat both equally so that the interface presents them as analogs of each other.

This helps to communicate the domain model and its available operations as

well as to simplify the interface.

As we mentioned earlier, the current performance holds the user’s current

selection of a part and a voice. This combination defines what he sees and

edits. The score matrix depicts the actual content in form of events. There

may be no events at all for the current performance. In that sense, we may

understand the current performance as a 2-dimensional query and the events

in its score matrix as the query result.

2.2.1 Navigating Down

Basically, two context dependent (local) navigation operations are sufficient

for browsing and selecting all material in the library: Moving down in a DAG

and moving up.

Moving down means the user chooses a sub-node of the current perfor-

mance that will become its new scope and reference point. For example, he

might want to view and edit a certain chord of the currently selected chorus.

Or he might want to ”enter” the toms from the currently selected drum set.

Figure (2.4) shows how the current performance would change from Fig-

ure (2.3) if the user moved down to the composed voice labelled as Drums.

At this level in the example, one cell of the base drum contains three events

and the other contains one.

To navigate down to the drums, the user needs the graph editor, which

2.2. NAVIGATION 23

he can slide in with a simple swipe. In Figure (2.7), a swipe-up on some

sub-part revealed the part editor, while in Figure (2.8), a swipe-left on some

sub-voice revealed the voice editor. Since both are analogs of each other and

look similar, it will suffice to focus on the voice editor.

V E R S E C H O R U S

Figure 2.7: A mockup of the part editor

When navigating down to the drums, the screen depicted in Figure (2.8)

turns into the one in Figure (2.9), which corresponds to Figure (2.6).

Since the sub-nodes of the current performance determine the content

that is actually being displayed and edited, there are several ways to design

the act of ”entering” or ”opening” them. In our design, a double tap on the

graph-editor side of a sub-node selects that sub-node as the new scope. We

chose the double tap for a few reasons:

1. It resembles opening files and programs.

24 CHAPTER 2. DESIGN CONCEPT

V E R S E C H O R U S

Figure 2.8: A mockup of the voice editor

2. It prevents the user from accidentally changing the context.

3. It is in line with our overall approach to ...

(a) use simple and natural gestures for frequently used direct opera-

tions like local content editing.

(b) use more advanced gestures for infrequently used meta operations

like changing the editing context.

2.2. NAVIGATION 25

V E R S E C H O R U S

Figure 2.9: The performance <Song, Drums> and the voice editor

2.2.2 Navigating Up

One important reason for why we have part- and voice abstractions in the

first place is that they allow the user to reuse material. He may use the same

part with different voices (instrumentations) and vice versa.

But even more, he may reuse (reference) the same node within different

super-nodes. For example, a pop- and a jazz instrumentation may both

employ the same type of piano. Or two verses may employ the same chords

but in different orders. In these cases, there are nodes (piano and chords)

that have multiple parents in their respective graphs. Technically, DAGs are

not really trees but our abstractions are better understood and visualized as

hierarchies.

Nodes that have only one sub-node would typically be redundant. But

most nodes would have only one super-node. Moreover, when the user nav-

26 CHAPTER 2. DESIGN CONCEPT

igates up, he most often goes to that super-node from which he came. So,

to keep things simple, we don’t make the user decide which parent he means

when navigating up but, instead, always go to the one from where he came.

It is still possible to navigate to all nodes in the library because the library

acts as the default root of all nodes that would otherwise have no parents

and be roots themselves.

In our design, a two-finger tap on the editor-side of sub-parts or sub-

voices shifts the interface one level higher in the respective dimension. The

two fingers don’t need to tap the same sub-node but can be anywhere on

either sub-parts or sub-voices. This is analog to panning and zooming, where

two fingers are needed to grab the whole score matrix and, thereby, relate to

a higher abstraction level.

2.3 Graph Editor

The user can perform five basic editing operations on the current perfor-

mance. These five are a minimal set of operations that is still sufficient to

build any thinkable ordered DAG:

1. Adding another sub-node

(a) Group one or more existing sub-nodes

(b) Create a new node (in the library)

(c) Reuse an existing node (from the library)

2. Splitting (or ungrouping) a sub-node

3. Removing a sub-node (from the performance)

4. Deleting a sub-node (from performance and library)

5. Moving a sub-node to a different position

The first four of these operations can be performed through the buttons

that Figure (2.10) highlights.

2.3. GRAPH EDITOR 27

Figure 2.10: The graph editor allows to create (group), split (ungroup),

remove and delete sub-nodes.

To perform certain operations on one or more sub-nodes, the user must

first select those nodes. He can do that by tapping sub-nodes in the graph

editor. In Figure (2.11), the user did select Drums and Vocals.

V E R S E C H O R U S

Figure 2.11: The sub-nodes Drums and Vocals have been selected for per-

forming graph editing operations.

In the following, we’ll explain in more detail what these operations mean

in terms of graphs.

28 CHAPTER 2. DESIGN CONCEPT

2.3.1 Adding

There are three ways the user might want to add another sub-node to the

current performance.

Grouping

Grouping replaces one or more existing sub-nodes of the performance by a

new node that becomes their parent. For example, the user may turn the

three tom voices of a drum set into one voice group called Toms. Or he

can create a piano instrument by grouping all piano keys. On the time-axis,

he may summarize 8 bars as a part called Verse 1. Grouping re-structures

the form (syntax) and does not change the audio output (semantics) of the

performance.

Creating

When no sub-node is selected, the create/group button simply creates a new

leaf node and inserts it into the performance. In terms of parts, the user may

start creating a new song in the context of an album, insert a new bar into a

chorus or start a totally new idea in the library. In terms of voices, he may

add a sample to an instrument or create a new voice as a container for other

voices.

Note that users can compose those graphs through a global top-down

approach by enriching and splitting high-level nodes as well as through a

more local bottom-up approach by grouping low-level nodes.

Reusing

Reusing means the user can choose an existing node from the library and

insert it into the performance. Thereby, he can reuse material across all

songs, projects, ideas, instrumentations etc.

Of course, the interface offers only those nodes that are not an ancestor

of the current performance because the DAGs must remain acyclic. For

2.3. GRAPH EDITOR 29

example, a song cannot contain itself as a sub-part.

That said, a node can reference one and the same sub-node multiple

times. For example, a song may use the same 2-bar transition from verse to

chorus whenever a verse leads to a chorus (repetition). Or there simply are

two different instruments of the same type and the user wants to write their

notes separately.

2.3.2 Ungrouping

Ungrouping a sub-node removes it from the performance and replaces it with

all its children. If the original sub-node is not referenced by any other node,

it will also be deleted from the library. Like grouping, this operation does

not change the audio output.

At this point, one might ask about merging and splitting composed nodes.

Those would be reasonable operations, but they can be achieved through

grouping/ungrouping. However, grouping/ungrouping cannot be achieved

through merging/splitting, so the latter pair does not offer an alternative

minimal set of operations.

2.3.3 Removing

Removing a sub-node disassociates it from the performance. The (former)

sub-node will still exist in the library and may still be referenced from other

nodes.

2.3.4 Deleting

Deleting a sub-node removes it like described above but also deletes it per-

manently from the library.

However, there is a restriction to the deleting operation. The removed

sub-node or any of its descendants will not be deleted if they are being

referenced by other nodes. That way, the delete operation will not effect

other material.

30 CHAPTER 2. DESIGN CONCEPT

For example, the user deletes a verse from a song. The verse uses four

bars. The third of those bars is also used in another verse or song. The

operation will delete the verse and three bars but keep the third bar in the

library.

2.3.5 Repositioning

A node defines an order on its sub-nodes. The interface displays the sub-

nodes of the performance in that order. The user may want to edit the orders

that the performance defines on its sub-parts and sub-voices. To that end,

he can simply long-press a sub-node, drag it to its new position and drop

it there. This should be reminiscent of moving columns and rows around in

spread sheet software.

2.4 Event Editor

2.4.1 Panning

To move (pan, scroll) the score matrix (content view) around, the user first

has to grab it with two fingers. The interface signifies that the user grabbed

the whole thing by marking it with a half transparent red overlay as can be

seen in Figure (2.12).

The user can then zoom and pan with one or both fingers. He can even

temporarily release all fingers, the score matrix will keep its momentum and

slowly decelerate (inertia). As long as it moves, the user can re-grab it and

proceed panning with one finger. As soon as it stops, scroll mode ends and

the overlay disappears. We provided the reasoning behind this interaction

design in the project paper [18].

2.4. EVENT EDITOR 31

Figure 2.12: The interface in panning/zooming mode

2.4.2 Zooming in

The user can zoom in on a particular location with a two-finger pinch, like on

a regular zoomable scroll view (Figure 2.13). Like with panning, the whole

content view (score matrix) is visually locked in scroll mode as soon as both

fingers touch the content view.

2.4.3 Zooming in on a Part or Voice

Because parts and voices are independent concepts, the interface should treat

them as such. Consequently, zooming is direction-sensitive in our implemen-

tation. How much a pinch gesture zooms into voices and into parts depends

on how much the fingers actually pinch in either dimension. The user can

zoom in only on voices or only on parts or do anything in between Fig-

32 CHAPTER 2. DESIGN CONCEPT

Figure 2.13: The interface zoomed in

ures (2.14) and (2.15).

This also leads to greater articulatory directness than conventional scroll

views. Since both fingers remain on the exact spot in the editing plane

during the pinch gesture, it feels much more like actually grabbing the content

instead of performing an arbitrary gesture which the interface then translates

into zooming.

2.4.4 Zooming out

Of course, the pinch gesture can also zoom out. The difference is that zoom-

ing out is not location-sensitive. A zoom out reflects the intent to bring back

into view what is currently outside of it, i.e. to regain overview.

In conventional scroll views, zooming out is location sensitive. That

means that, while zooming out, the viewport might collide with the bound-

2.4. EVENT EDITOR 33

Figure 2.14: The interface zoomed only horizontally.

aries of the scroll content view. Typically the scroll view first pretends as if

it was possible to move the viewport beyond the content view, and after the

gesture is complete, the viewport abruptly snaps back into the bounds of the

content view.

In contrast, our ”scroll view” implementation performs a smooth transi-

tion on zoom out. It not only changes the zoom level but also the viewport

position so that the viewport position perfectly fits the content view (score

matrix) when the zoom level is back to 1.0 or ”normal”.

This is especially helpful in our interface concept because, here, all content

(voices and parts) is visible by default. The user can quickly return to this

view with one gesture. The detail level with which he interacts is not just

determined by zoom level but also more explicitly by selecting a certain depth

in voice- and part graph. Therefore, our design makes it unnecessary to have

34 CHAPTER 2. DESIGN CONCEPT

Figure 2.15: The interface zoomed only vertically.

a score matrix that is so complex that it can’t be summarized on one screen,

like it is often the case in the arrange view of conventional DAWs.

2.4.5 Adding an Event

The user adds an event (note) by simply drawing it with a one finger swipe,

thereby he also determines the length of the event. Actually, a one finger

swipe does not directly create an event but marks a time interval within a

score matrix cell. If no events yet exist in that interval, the marking turns

into a new event. Otherwise, all events overlapping with the marking are

deleted. The marking is restricted by musical quantization.

2.4. EVENT EDITOR 35

2.4.6 Deleting an Event

Figure (2.16) shows how the user can delete several events with one gesture

by drawing a marking over them.

Figure 2.16: In this case, the editing range will delete four events.

Quantization ensures that editing gestures never effect more detail than

the user actually can control. Apple recommends that interactive elements

are at least 44 points big in either dimension. The interface is supposed

to always pick the most detailed musical quantization raster that satisfies

that requirement for the current zoom level. However, the implemented

component of our prototype doesn’t yet realize this adaptation.

The resulting Quantization Cells act as our interactive elements. So the

user does actually not span an interval of arbitrary length but touch a discrete

number of these cells. One advantage of this is that a simple tap without

any swipe already marks a single cell, and that allows the user to delete and

36 CHAPTER 2. DESIGN CONCEPT

create events with a single tap.

Before we move on to our evaluation, we have to mention that we totally

skipped the whole topic of actually playing the current performance which

would, of course, be central to any music application. One reason for that is

that we’re investigating a much more fundamental layer of music sequencers

to which playback isn’t even that essential. The other reason is that we

don’t have a fully functional product and our implementation has no caching

mechanism that would actually allow real time playback.

Chapter 3

Evaluation

3.1 Methodology

In the seminar, we had laid out our overall approach and specific methodology

in great detail. Here, we just re-establish that context.

Not to utilize user feedback at all would be a huge mistake. It would also

be a huge mistake to build the whole design exclusively on user feedback.

Finding the sweet spot between those extremes is more of an art than a

science.

Our orientation for this thesis is Johnston’s [26] approach to research and

design of new musical interfaces (Figure 3.1). His idea of the process involves

listening to users and understanding their belief systems. At the same time,

it relates the user study to a specific novel design and, thereby, allows the

design process to be driven by a grand vision.

Initial
Criteria

Musical
Interface

Applied
Criteria

Design User
Study

Theory

Refined
Criteria

Theory,
Aesthetics

Figure 3.1: Research- and design process for new musical interfaces, accord-

ing to Johnston [26]

37

38 CHAPTER 3. EVALUATION

This latter aspect is crucial. The standards that users already know

limit their perspective. Observing how they manage within that old frame

of reference is not enough to create a new frame of reference. Therefore, in

order to design a new interface, we must confront users with a new interface.

In terms of Johnston’s methodology, we now have a new musical interface

as well as applied criteria. The next step is to design and conduct a user

study. We explained in the seminar how Johnston understands the user

study more specifically as a ”user experience study”. This study is supposed

to tackle three questions:

1. Do the instruments [musical interfaces] that have been created meet

the design criteria identified during design?

2. How do musicians experience them?

3. What are the relationships between the characteristics of the instru-

ments [musical interfaces] and the musicians’ experiences?

3.2 User Study

Measuring creativity is a tricky task. Most quantitative methods to mea-

sure the creativity of people or the creativity-support of systems rely on self

reports and language analysis.

For example, Latulipe et al. [4, 7] did incredible work on developing a

quantitative index for creativity-support. Their work reminds us of the cre-

ativity factors that we have to look out for in our evaluation: ”Collaboration,

Enjoyment, Exploration, Expressiveness, Immersion, and Results Worth Ef-

fort”.

Other research used hard data from system logs of user interaction but,

then, had to interpret that data in terms of creativity [31]. In a publication

on the Evaluation of CSTs, Hewett et al. [21] stated:

”... qualitative methods [...] are particularly well-suited to gain-

ing a deep understanding of the needs and methods of a commu-

3.2. USER STUDY 39

nity of practice. When performed by an experienced researcher,

in-situ observations and semi-structured interviews can yield a

rich set of data in a relatively short period of time (Millan, 2000),

providing the information necessary for subsequent design and

evaluation phases.”

Particularly in computer music research, it is very common to conduct

qualitative studies with a small number of musicians because such investi-

gations can go into depth and actually illuminate the sometimes intricate

working practices of creative users. Much of the data that is gathered comes

from interviews.

For instance, Carter, Eaglestone and their colleagues [5, 14] analyzed the

cognitive styles of composers. Their initial study was based on interviews

with four composers. Donin and Theureau [9] analyzed the long term process

of just one composer.

Even in general HCI research, the benefits of assessing small groups

and then moving on to the next iteration have been acknowledged. Jakob

Nielsen [34] stated:

”Elaborate usability tests are a waste of resources. The best

results come from testing no more than 5 users and running as

many small tests as you can afford.”

We conducted a qualitative evaluation of our interaction design through

assessment sessions with five participants. The participants are regular users

of sequencer software. Their musical expertise ranges from amateur- to pro-

fessional level. On page (101) in the appendix, we list their detailed profiles.

The evaluation had to satisfy three criteria: It had to be fast and cheap. It

had to produce a lot of qualitative data. It had to be applicable at a relatively

early stage and produce valid feedback even with just mockups. To provide

for all that, we employed a blend of five different evaluation techniques:

Feature Inspection Nielsen [33] described Feature Inspection as one of

eight usability inspection methods. The developer analyses how well

40 CHAPTER 3. EVALUATION

features are implemented and how well they complement each other in

specific tasks.

In Section (3.4), we’ll adapt this technique to our needs. We’ll interpret

our requirements as the features that we want to offer, estimate how

well they are implemented and reflect on how they work together to

serve the intention of our proposed model. To put the estimations in

perspective, we’ll also compare them to GarageBand.

Field Study Field studies have been used in HCI to observe actual behav-

iors of users in their real world setting [27, 37, 40].

We observed and interviewed our participants in their own working

environment, that is: at their home, in their basement studios and

in the sound studio of the Konstanz University of Applied Sciences.

This made it possible to open the participant’s own projects and see

their working habits live. It also enabled the participants to exemplify

their statements with real world examples and to reflect on their own

material.

Paper in Screen Prototyping Particularly for mobile applications, in screen

prototypes have proven to be highly effective in gathering feedback on

design concepts at an early stage of development, in HCI research [2]

as well as in the industry at Apple Inc. [1].

We created partially interactive mockups in Keynote and presented

them to the participants on an iPad, which is our intended platform.

Thereby, we were able to demonstrate not only the navigational struc-

ture of the interface but also particular actions like going in and out of

sub-nodes, opening the detail pane of a sub-node or performing graph

editing operations like grouping and un-grouping.

Interview Interviewing is a very basic evaluation technique that lets the

interface designer assess specific aspects of the interface or the user’s

thought process and feelings [23, 28, 38].

3.2. USER STUDY 41

Part of our assessment sessions were basically unstructured interviews.

We had a rough structure prepared and made sure to cover certain

aspects, but the questions were mostly open. The interviewing tech-

nique also allowed us to respond to what participants found important

or interesting. Thereby, we could create a relaxed atmosphere that, in

turn, encouraged participants to think aloud.

Think Aloud According to Nielsen [32], ”Thinking aloud may be the single

most valuable usability engineering method.” And indeed, it is has a

long history in HCI [35, 41]. Think Aloud intents to let users literally

think aloud about what they try to achieve, what irritates them etc. It

is a simple, cheap and very effective method that can reveal the most

important insights with just a handful of participants.

Throughout the assessments, we encouraged participants to think aloud

and freely associate, and we posed some hypothetical tasks to them to

further facilitate thinking aloud.

We captured all sessions as audio recordings and also got some sketches

from participants. The recordings have an average length of 102 min-

utes. In most cases, our correspondence and conversation with the

participants extended beyond what was recorded. Nonetheless, we had

8.5h of audio recordings which we analyzed afterwards.

The sessions were structured as follows. Stages (1) - (3) are completely

independent of our own ideas and it was our intent to assess the participant’s

unbiased thought process and needs before introducing them to our design

concept:

1. We recorded some personal data (sex, age, profession) and assessed

the participant’s musical experience regarding instruments, live perfor-

mance, composing, software, platforms etc.

2. We assessed the participant’s understanding and practice of the music

composition process and the role that software plays in it. After taking

42 CHAPTER 3. EVALUATION

a general account of that, we made sure that the following particular

aspects were covered:

(a) Mobility

(b) Preparation and Reuse

(c) Voice abstractions

(d) Temporal abstractions

3. We assessed the participant’s wishes and visions for better composition

software. We specifically asked what annoys the participant in his setup

and software and whether he has to do any workarounds to achieve a

goal.

Stages (4) - (6) examined how the participant’s characteristics manifest

in their approach to learn and understand the concept of our prototype:

4. With the help of object graphs and sketching, we first established a

mutual language together with the participants. This step resembled

a bit of Domain-Driven Design [15]. We got clues about their specific

mental models of music composition and about how they relate to our

proposed model and the graph-related operations that come with it.

5. Using partially interactive in-screen mockups in Keynote on the iPad,

we presented a conventional scenario in the model and visual language

of the prototype and also pointed out the simplifications and possibil-

ities that our design offers. The example scenario that we employed

here is the same that we outlined in Chapter (2). During this intro-

duction, we encouraged the participants to freely associate, comment

or ask questions.

6. To see how the participants actually perceived our concept, we asked

how they would apply it to specific use cases. In the end, we also

casually encouraged an open discussion to elicit what was really going

through their minds.

3.2. USER STUDY 43

Figures (3.2) and (3.3) show three participants in their working environ-

ment reflecting on our design.

Figure 3.2: Participants B during his assessment session

44 CHAPTER 3. EVALUATION

Figure 3.3: Participants D and C during their assessment sessions

3.3. HOW THE PARTICIPANTS USUALLY WORK 45

3.3 How the Participants Usually Work

With regards to general working practices, we observed surprisingly many

commonalities between our participants. This allows us to list just those

characteristics here that apply to all participants:

3.3.1 The Process and how it Relates to Software

1. They do most of their composing solo, i.e. not through collaboration.

2. Their inspirations and new ideas often come independently of any soft-

ware use, on the go, spontaneously or when playing instruments.

3. They use software to capture ideas on the go, either with a Macbook

(four participants) or with an iPad (one participant).

4. Sometimes, they have to capture ideas very rapidly, leaving no time for

technicalities, clean structure or naming anything.

5. They care about the creative composition phase and have little knowl-

edge of- or interest in the mix and production of their projects.

3.3.2 Accessing and Re-using Material

1. They collect many ideas on their computers, most of which lie there

for long times and never get ”finished”.

2. They rarely come back to old ideas that haven’t been on their minds

for some time.

3. They prefer starting new projects over perfecting old ones.

4. They practically never combine different ideas from different project

files into a new project. One reason for that is that, when they start a

new project, they clearly identify it by the unique idea, vision or mood

that they have in mind for it. That specific intention separates projects

46 CHAPTER 3. EVALUATION

from one another. Even over the course of working on a project, they

do not think of it in terms of formal characteristics like its key, how

it employs tonic, subdominant and dominant and so on, not even its

specific chord progressions.

5. Within project files, they dump or store ideas related to the project for

later use. They either put them on muted tracks or behind the actual

piece of music (in time).

3.3.3 Input and Instruments

1. They employ software early in the composition process. On the other

hand, software use is always intertwined with playing and recording

real instruments. They record material not only for the end result but

also as an intermediate step for experimentation and reflection during

the whole process.

2. They use prebuilt content and combine virtual- with real instruments.

3. When composing melodies or chords that are to be recorded with real

instruments, they sketch out, pre-listen and develop those with the help

of virtual instruments.

4. They do not, as one might expect, record scores for virtual instruments

by playing a MIDI-keyboard live and recording that. Instead, they

create scores manually, note by note, either in the piano roll editor

with the mouse or with MIDI- and regular keyboard in Finale.

3.3.4 Handling Temporal Structure

1. Even without software, they work with- and think in terms of temporal

abstractions like verse and chorus. The order of those parts and the

exact temporal structure of a piece evolve organically over the whole

composition process.

3.4. FROM REQUIREMENTS TO DESIGN 47

2. They edit temporal structure and part order by manually editing all

material with the mouse through operations like cutting, marking,

copy/paste, drag and drop.

3. They manually move notes around on the micro-level scale of mili sec-

onds to introduce either groove (swing) or natural irregularities.

4. In addition to mere repetition, they often employ some form of looping

in their projects.

3.3.5 Using the Software

1. They use a linear software sequencer as their central application, either

Apple Logic Pro (three participants), the linear sequencer in Ableton

Live (one participant) or Sonar (one participant).

2. They have issues with technical aspects of their music software like per-

formance, reliability, compatibility, self-sufficiency (as explained in [19])

and the combination of different programs.

3. They are annoyed by- or at least aware of the cumbersome way their

desktop sequencer provides panning and zooming. But they somehow

got (had to get) used to that.

4. They use only the most basic features of their sequencer software and

are far from exploiting its production power.

3.4 From Requirements to Design

Here, we answer the first of Johnston’s [26] three questions for the user study:

”Do the instruments [musical interfaces] that have been created

meet the design criteria identified during design?”

48 CHAPTER 3. EVALUATION

Of course our ”design criteria” are the 36 requirements on which we elab-

orated in the seminar [19] and, more specifically, the four core requirements

on which we focused in the project [18].

To tackle the above question, we will not only interpret our assessment

sessions, but also compare HAIL against GarageBand in a more formal (if

not quantifiable) fashion. For this requirement inspection, we distinguish five

levels of support:

Unsupported The requirement is unaffected by the interaction concept and

would be hard or impossible to satisfy.

Prepared (+) The requirement is installed in the interaction model and

could be integrated into the interface.

Partially satisfied (++) The requirement is somehow satisfied but could

be improved significantly.

Mostly satisfied (+ + +) The requirement is mostly satisfied. More work

would improve it only a little bit.

Fully satisfied (+ + ++) The requirement cannot be met with more pre-

cision.

In the following, we’ll assign a support level to each requirement and

comment on that rating in more or less depth. Of course, the rating reflects

only a qualitative estimation and not a quantitative measurement.

The first two requirements are actually not part of any of the four big

categories. They address aspects of cognition.

#1 and #2 Cognitive Styles and Dimensions (+++) It seems our

approach is better aligned with the required cognitive styles and dimensions

than conventional sequencers. Yet, to analyse this in depth is beyond the

scope of this work.

In any case, our participants seemed to tend towards the global style.

Participant A said she preferred simpler interfaces, ”because you don’t have

3.4. FROM REQUIREMENTS TO DESIGN 49

to think about it much, like what kind of beat you want to use, when you

don’t even have a matured idea. You’re not distracted by that [too many

options].”

3.4.1 Requirements of Abstraction

Core Requirements

First of all, our design obviously satisfies the identified core requirements of

abstraction to a great extent.

#19 GCDCG-Sequencer (+++) Our design is graphical, provides cus-

tom abstractions, follows a control flow paradigm and is very general purpose.

Delayed linearisation is enabled in principle although the exact design

decisions around this aspect allow for a wide variety of solutions. More ex-

perimentation at the interface level is needed to optimise improvisational

interaction. However, our design definitely supports the functionality of se-

lecting and playing material at any scope.

#21 Voice Groups (+++) The model as well as the interface represent-

ing it allow to form ad hoc groups from arbitrary sets of voices.

However, the requirement demands that composed voices behave just like

atomic voices, and our user study amplified the impression that there are

more ways to realize global events with which we might want to experiment

in the future. Our current solution is probably not optimal.

#25 Temporal Abstraction (++++) Our design also allows to group

any ordered selection of existing time ranges (parts) as one bigger time range.

The user can treat time- and voice abstractions independently.

Temporal abstractions are pretty straight forward and the solution space

is not as vast as for voice groups.

50 CHAPTER 3. EVALUATION

#32 Preparation (++++) Whatever the user creates necessarily ends

up in the library. He can follow a bottom-up approach just as well as a top-

down approach. That means he can build small snippets and later integrate

them into a larger structure, or he can first sketch out the larger structure

and then fill in the details by splitting nodes and inserting new ones.

#33 Global Reuse (+++) Part- and voice library provide access to all

the user’s previous work. When adding a node to the current performance,

the user can import any perviously prepared node. Thereby, the existing

material acts as a set of building blocks out of which the user can make new

creations.

However, the way material can be combined across different keys, tempi

and lengths can surely be optimized.

Other Requirements of Abstraction

In addition to mostly satisfying the core requirements, our design is, at least,

prepared for all other abstraction requirements.

#20 Transient Voices (+++) The separation of frequency- and time

abstractions in our model already resolves this issue to a great extent. Tran-

sient voices can be collapsed into voice groups. This is especially valuable

since it can be done at any abstraction level. With our approach, transience

should no more waste screen space or overwhelm the user.

However, the problem is not completely solved at the interface level.

When the instrumentation of a performance drastically changes over time,

the fixed mapping of sound sources (instruments) onto the interface’s vertical

axis can still be awkward. This can be the case, when unrelated projects are

viewed side by side like in the performance <Part-Library, Voice-Library>.

On the other hand, that should not be the default mode of working and it is

only a problem when the user still hasn’t embraced reusing voices.

3.4. FROM REQUIREMENTS TO DESIGN 51

#22 Emergent Mix Groups (++) This is one of those features that

almost come for free as a result of the underlying model. Through the ele-

gance of the model, mix groups are a given. Our in-screen prototype involves

a volume-panorama control in the detail pain of every voice.

However we didn’t design or evaluate the interaction with mix groups in

any more detail. An issue may be that mixing one voice-group can change

its output level and that effects the mix of its super-voice. Overall, we

haven’t spent enough focus on this requirement to assume it is already mostly

satisfied.

#23 Juxtaposability (+++) This issue mostly resides on the interface

level. It is a question of how the model is presented. Our design allows to

put voices into groups, which resolves the issue to a great extent. Also, the

user can change the order of sub-voices in a voice group, so he can view and

edit voices of his choice side by side. Through parts, the interface also allows

to see formerly unrelated material side by side. Because the user can re-use

parts and voices, he can create different ”views” on the same material. He

can utilize this feature for editing.

But juxtaposability could be taken further. If voices have no common

ancestor (voice group) in the voice graph, the user should still be able to edit

them side by side for a common time line. Also, with complex voice hierar-

chies, the effort to get a certain set of voices into view may be discouraging.

One solution would be a temporal virtual performance entity that only

serves the purpose of editing. Users would put arbitrary voices into this

entity like they would bookmark a page or add an item to a shopping cart.

Another would be that parts and voices could be collapsed and expanded

in the performance view, so that different abstraction levels could be viewed

and edited at the same time.

#24 Groove (+) This is also an interface issue. Our design distinguishes

the discrete quantization raster from with micro level offsets. The question

52 CHAPTER 3. EVALUATION

for future design will be on what kind of graphical parameter to map these

offsets.

#26 Liveness (++) As we commented on requirement #19, more work

needs to be done on the improvisational interaction of our interface although

interactive triggering of material and immediate playback are quite advanced

in our design.

#27 Direct Audio Processing (+) Conventional sequencers do not pro-

vide time ranges as explicit objects. Therefore they can apply audio process-

ing only to the abstract concept of streams (channels). In our model, on

the other hand, everything is based on concrete audio data and composed

material like a performance is identified by its voice and time range, which

makes the future implementation of direct audio processing straight forward.

Note how this reflects Requirement #19 as it abandons the data-flow

paradigm in favor of the control-flow paradigm.

#28 Scalable Audio Processing (+) In order to play high-level ab-

stractions reliably in real time, we would need some caching mechanism.

Hierarchical data models perfectly lend themselves to caching. In our model,

two independent hierarchies are conjointly used to access the same data. This

makes the implementation of caching more tricky but opens up a range of

potential solutions.

We haven’t yet implemented a caching mechanism. Improving on that

will be an interesting, complex, technical endeavor with great returns for

usability.

In contrast, GarageBand has no voice groups and not even a ”freeze”

function for tracks, so everything has to be rendered in real time. Hardware

performance limits the complexity of projects.

#29 Rich Audio Processing (+) Since custom abstractions are given

and the model supports direct audio processing, applying multiple processors

3.4. FROM REQUIREMENTS TO DESIGN 53

to one composition entity poses no conceptual cost.

#30 Visual Audio Processing (++) Our tree-like data structures and

audio-based model make the presentation of composed objects as audio data

feasible and easy to implement. Our prototype already previews the content

(resulting effect) of events as waveform sums.

#31 Nondestructive Audio Processing (+) Since everything is based

on concrete audio anyway and possibly on hierarchical caching, the original

version of a piece of material could quickly be restored.

#34 Versioning (++) Versioning is only supported as an implicit pos-

sibility. The user can create different nodes, exchange and compare them.

Most of all, he can utilize re-use to create different versions.

Again, the model of conventional sequencers is far from prepared for this

because it doesn’t have a real structural organization for musical material.

There are no explicit sub-entities to which versioning could even be applied.

Versioning only starts to make sense when the core requirements of abstrac-

tion are satisfied.

#35 Referencing (++) Referencing is intrinsically built into our model.

All composed nodes reference their sub-nodes. But the design can be im-

proved in the visual communication of repetition and looping. Also, there is

no possibility, yet, to reference composed event data, for example to play the

same arpeggio on different keys.

#36 Variation (++) As we mentioned in the seminar paper, variation

is the most ambitious requirement. It combines versioning and referencing.

And although we didn’t explicitly design for this, the concept we propose

actually offers a powerful variation mechanism. Through looping and global

events, the user can vary and refine a global theme by adding events to it in

selected sub-parts.

54 CHAPTER 3. EVALUATION

We didn’t tackle the question how events of a theme could be permitted

in sub-parts, and there are certainly other approaches to variation that users

might wish for.

3.4.2 Requirements of Simplicity

Finally, we briefly reflect on the remaining, more general requirements.

The various aspects of simplicity that the requirements point to were also

echoed by our participants. They were likely overwhelmed by software and

find retreat in acoustic instruments to maintain a creative mindset. Partici-

pant A said about Logic: ”I’m too lazy to get into it deeply. This mantle of

functionality does really overwhelm you.”

Our platform decision alone already greatly elevates the satisfaction of

most requirements of simplicity [19].

#3 Constraints (++++) A prototype is by its very nature constrained,

but our model also facilitates a certain focus on creating composed audio.

#4 Concentration (++++) The focused functionality, custom abstrac-

tions and fluent zoom of our prototype ensure that the user can easily match

the interface’s focus with his thought process. What the interface presents

is exactly what he cares about in any moment.

#5 Accessibility (+++) This requirement seems trivial but is crucial for

creative tools. Mobile devices offer the greatest – but not total accessibility.

#6 Mono-tasking (++++) Mobile devices typically enforce mono-tasking

in the sense that only one app can be opened and visible at any one moment.

Our prototype also hides the system bar, so that only the composition tool

is visible while composing.

3.4. FROM REQUIREMENTS TO DESIGN 55

#7 Single Interaction Context (++++) Our design basically employs

only two contexts: navigating the graphs and editing a node. Still, both are

part of the same interface and can be visible at the same time. Due to

the elegance of the model, many compositional tasks can be accomplished

through those contexts. Conventional sequencers employ far more different

interaction contexts but allow for less compositional complexity.

#8 Single Physical Mode (+++) The mobile platform encourages the

app designer to replace external input controllers like keyboards with the

device’s own touch screen. Even compared to a desktop with no musical

controllers, the tablet’s modality is much more focused and its articulatory

distance much smaller. In alignment with all requirements, our design is

focused on editing, which also contributes to its focused physical mode.

Again, participant’s confirmed what we extracted from the literature, as

they like to use their hands for creative work. In the context of composing

the overall structure of a piece of music, Participant A said: ”I noticed I can

work very well with pen and paper. [...] I definitely need some doodling.”

#9 Scalable Graphics (++++) At least iOS, for which we implemented

the prototype, uses a resolution-independent screen metric called points.

This, the quite fixed screen size and the necessity to make interactive el-

ements large enough for touching nullify the issue that once arose on the

desktop.

#10 Fluid Panning and Zooming (+++) On the desktop, setting the

focus within the editing plane might require the user to shift his attention to

the periphery of the plane and to set four little sliders with the mouse. On

the tablet, it requires one swipe gesture directly performed on the content.

In contrast to GarageBand, zooming out to regain overview is especially

fast with our prototype. But our implementation is not as fine-tuned.

56 CHAPTER 3. EVALUATION

#11 Relative Mixing Relative mixing is a bit removed from the other

requirements of simplicity and it isn’t as much affected by the platform.

Relative mixing would be a great complement to other features like cus-

tom abstractions and emergent mix groups, but it is in itself an isolated

non-trivial problem that involves statistics, algorithm complexity and acous-

tics. In terms of Direct Manipulation [17], relative mixing together with

touch interaction would make audio mixing far more semantically direct.

3.4.3 Requirements of Freedom

#12 Complementarity (+) Our design is definitely focused on the cre-

ative aspect, which is creating composed constructs of audio. However, while

our model very much encourages it, the implementation doesn’t yet provide

file import or the use of other apps as sound sources.

#13 Interchange (+) With our design, the user builds all compositions

from plain old WAV files, but the implementation doesn’t provide true file

import and export. Our model lends itself to saving material in an XML-

based format but we didn’t implement such functionality.

Also, it is typically impossible for mobile apps to directly communicate in

real time. Michael Tyson solved this issue for audio apps on iOS. AudioBus

enables us to implement full interchange functionality in the future. And that

allows us, today, to focus our design on composing higher-level constructs

from the output of different sources/apps.

#14 Self-sufficiency (++++) Our design is, of course, restricted in

many ways. This helps the tool and its produced content to be self-sufficient,

but it will be a challenge to keep this promise of self-sufficiency when other

features are added.

Just like the literature suggested, our participants also had problems with

data losses, format compatibility and accessing old material because music

software and its output artifacts are generally not self-sufficient and don’t

3.4. FROM REQUIREMENTS TO DESIGN 57

promote interchange.

#15 Generality (++++) This follows directly from our model and isn’t

even much affected by the interface design. Abstractions are by definition

generalizations and, through structural recursion, the user can build complex

compositions from simple blocks of any kind of audio.

3.4.4 Requirements of Exploration

#16 Emergent Exploration (++++) To distinguish this requirement

from others, we must ask if model and design enable and encourage the

user to explore possibilities beyond the current editing context. We want

to argue that this is very much the case because the model enables endless

combinations of existing building blocks and the library invites the user to

try them out.

Also, the appeal of custom abstractions is that anything that the user

edits and creates is immediately available to him as a simple building block,

so he is always tempted to test his creation in a larger context. This possibly

endless recursion is unknown in existing sequencer software.

#17 Interface Exploration (++++) Can the interface be learned iter-

atively? Because the interface is a direct reflection of our generalizing model,

it hasn’t even many layers, which is good. The few layers that it has (sub-

nodes, graph editor, detail pane) can be revealed and hidden as needed, which

allows the user to explore them iteratively. The model and our emphasis on

simplicity will help a great deal to keep this requirement satisfied when more

features are added.

#18 Direct Exploration (++++) As mentioned above, interface and

model are in congruence. There isn’t much in the interface that isn’t part of

the model and vice versa. The user deals with a set of existing material and

the currently edited performance.

58 CHAPTER 3. EVALUATION

3.4.5 Summing Up

The following tables roughly compares our design to GarageBand. First there

are requirements #1 - #18, which cover cognition, simplicity, freedom and

exploration.

Requirement GarageBand HAIL

1 Cognitive Styles ++ + + +

2 Cognitive Dimensions ++ + + +

3 Constraints + + + + + ++

4 Concentration ++ + + ++

5 Accessibility + + + + + +

6 Mono-tasking + + + + + ++

7 Single Interaction Context + + ++

8 Single Physical Mode ++ + + +

9 Scalable Graphics + + ++ + + ++

10 Fluid Panning and Zooming + + + + + +

11 Relative Mixing

12 Complementarity ++ +

13 Interchange ++ +

14 Self-sufficiency ++ + + ++

15 Generality ++ + + ++

16 Emergent Exploration ++ + + ++

17 Interface Exploration + + + + + ++

18 Direct Exploration ++ + + ++

3.4. FROM REQUIREMENTS TO DESIGN 59

Then, there are requirements #19 - #36, which make up the abstraction

category with its sub-categories of temporal-, voice-, processing- and reuse-

and-versioning abstraction.

Requirement GarageBand HAIL

19 GCDCG-Sequencer + + +

20 Transient Voices + + +

21 Voice Groups + + +

22 Emergent Mix Groups ++

23 Juxtaposability + + + +

24 Groove + +

25 Temporal Abstraction + + ++

26 Liveness ++

27 Direct Audio Processing +

28 Scalable Audio Processing +

29 Rich Audio Processing + + + +

30 Visual Audio Processing + ++

31 Nondestructive Audio Processing ++ +

32 Preparation + + + ++

33 Global Reuse + + +

34 Versioning ++

35 Referencing ++

36 Variation ++

GarageBand has such a hard time mostly because it doesn’t provide cus-

tom abstractions. Most of the requirements involve an applicability to all

abstraction levels and that kind of generalization is absent in the domain

model that GarageBand presents.

In summary, adding custom abstractions to a graphical control flow se-

quencer seems to promote vast improvements across many requirements of

the ”creator experience”. This is especially compelling since the support of

most requirements is positively affected, while we tackled only a few core

requirements.

60 CHAPTER 3. EVALUATION

This was possible since we decided, from the beginning [19], not to focus

on the interface itself but on its underlying domain model. We created an

example of Domain-Driven Interaction Design.

3.5 From Design to User Experience

As mentioned earlier, the user study is supposed to answer three ques-

tions [19, 26]. Here we answer question number two: How did the par-

ticipants experience our design? In the following , we’ll give an account of

our observations of these experiences without interpreting them.

The participant’s reaction and feedback to our design was much more

diverse and doesn’t appear as generalizable as their working practices. Only

a few of the following points of feedback were universally expressed by all

participants. The other points are still worth mentioning because of how

urgently they were expressed or how frequently they came up or because of

how critical or specific they are.

3.5.1 Event Editor

Participants were uniformly a bit conflicted about panning and zooming in

our implementation. They were, at first, delighted by the way the score ma-

trix zooms direction-sensitive and provides detail and overview in a seamless

and intuitive manner. Participant A said: ”This is cool. I like that.”

Participant E stated on panning/zooming in Logic, in contrast to our

implementation: ”That is also the annoying thing about Logic, that you first

have to [scroll/zoom] in this direction then in that direction ... That would

be really great, if you can do that intuitively with one gesture.”

But after playing around with it for a few minutes, participants became

annoyed by one or more of the following impediments:

1. Scrolling is not smooth due to performance issues. This caused a gen-

eral sense of uncertainty or fragility and amplified the other concerns

about panning/zooming.

3.5. FROM DESIGN TO USER EXPERIENCE 61

2. Participants missed the bouncing effect they know from iOS scroll

views. Sometimes, they were not sure whether they had hit the bound-

ary of the event view. One said he didn’t ”feel the confines” of that

content view.

3. Some participants proceeded scrolling with two fingers after they grabbed

the view, instead of releasing one finger. The resulting two-finger

pinches lead to unintended changes in zoom level, which was especially

irritating since vertical- and horizontal zoom levels are independent.

4. Some complained they were frequently zooming in an unintended direc-

tion. For example, they wanted to zoom in on parts and accidentally

also zoomed a little bit on voices, which they had to correct with the

corresponding zoom out gesture.

Participants were quite pleased with how event editing generally works,

but they missed a couple of features and pointed out some quirks of the

implementation:

1. Some participants found it funny or strange that drawing gestures work

from left to right but not from right to left. This is kind of a bug.

2. Some participants had difficulties understanding the meaning of events

because the visualization of audio samples is inconsistent within a voice.

They wondered if different events for one voice actually represented

different audio files. In the project paper, we explained what imple-

mentation issue causes this graphical inconsistency.

3. Participants liked the musical quantization but asked how they could

change its granularity and how to place events with more precision,

especially when zoomed in on the time axis.

4. Participants tried to drag and drop events around and said they would

want to do that even across voices.

62 CHAPTER 3. EVALUATION

5. Some participants wanted to change the length of events by ”pulling

them longer”.

6. Some asked about cutting events like it can be done in DAWs.

The assessments revealed no significant controversy or conceptual prob-

lem with the interaction design around events but clearly highlighted the

limits of our implementation.

3.5.2 Graphical Representation

The participants were aware of the principle difference between the model

and its graphical representation. Participant D stated: ”I found that very

interesting because, while you explained it [model and design] to me, I recog-

nized subareas that I know from other programs, where I see you try to bring

them together and that the main problem is to present that [our model] in

an interface because that is simply super difficult, also to do that in a way

so that you don’t have to attach a manual to it that explains how it works,

that’s most difficult about that.”

Several participants commented on the graphical preview displayed on

global events. They would prefer to see the ”contained” events instead of a

waveform sum.

Some participants would want to have more graphical feedback on the

internal temporal structure of the sub-parts of the current performance, par-

ticularly with regards to repetition and variation. The technique of color

coding came up where participant B (professional musician) was very affir-

mative while participant D (communication designer) warned against it since

it would only allow to distinguish about seven part types.

When navigating up or down, the relation between one and the next

abstraction level was a bit unclear to some participants and they wished for

smoothly animated transitions when navigating up and down in part- and

voice hierarchy.

3.5. FROM DESIGN TO USER EXPERIENCE 63

Because of our loop and variation mechanism, we had to graphically dis-

tinguish inherited and innate editable events. In our mockups, inherited

events are significantly darker to signify they belong to a higher (more gen-

eral) abstraction level. However, some users first perceived the active and

innate events as being ”selected”, which is only true in the sense that those

events are exposed and highlighted.

3.5.3 Understanding the Domain Model

All participants were able to understand our design in its entirety, including

part and voice graph, loops and their variation as well as the graph editor.

Here and there, participants were irritated for a moment or they needed a

few minutes to fully grasp a particular aspect, but we are safe to say that

our design posed no principle conceptual problem to them.

The ”of course, how else?”-attitude with which four participants received

our design and responded to it surprised us and actually made us worry that

we haven’t pushed the envelope hard enough.

A typical example of this is how our model dissolves the concepts of

notes and instruments and simply merges them into ”voices”. Participants

accepted that surprisingly quickly and offered different ideas of how to use

this aspect of the model, once they got a feeling for it. One participant

suggested grouping keys (atomic voices) into chords and then grouping those

chords into a harmony instrument for simple chord-based song writing.

It took participant A a little more time and effort to let go of her ideas

about how sequencer interfaces are supposed to work and look like. However,

like with the other participants, after she opened up and began to grasp the

much more general domain model of the prototype, she began to appreciate

the elegance, flexibility and power that this approach offers.

Some of the most rewarding experiences of this whole endeavor of de-

veloping the Human-Audio Interaction Lab where those aha-moments that

participants had when they let go and started to see the bigger picture. For

instance, participant A erupted in the middle of our demonstration: ”Ah! I

64 CHAPTER 3. EVALUATION

understand the basic concept. Slowly.”

Participants liked how freely our design lets the user combine material.

Participant C stated: ”I find it great, indeed, like that you can combine all

this stuff that is otherwise [in conventional software] really separated. Of

course, it requires adjusting your habits.”

All participants really liked the custom abstractions manifested in part

and voice graph. The notion of hierarchically grouping voices was particularly

obvious to all participants. Participant A said: ”Yeah, that makes sense. You

also understand that quickly.”

While all participants liked the idea of having all parts and voices they

ever created stored in a library, some disliked how the prototype treats that

library. They wished for a more prominent representation of the library as

well as more functionality for browsing, searching and pre-listening.

Participant D saw the main advantage and application area of our model

in collaborative settings, which is also interesting because the kind of collab-

oration that he suggested is roughly our ultimate vision behind the Human-

Audio Interaction Lab, beyond the goal of this thesis at hand.

Participants D and E strongly suggested that we analyze Ableton Live

because they saw parallels between our model and the non-linear interface of

Live.

3.5.4 Parts and Temporal Structure

Participant B said on parts as explicit nodes in a graph: ”That would be the

form of the piece [of music], I find that very important because something

[software] like that really doesn’t exist ... the whole aspect of musical forms.”

And participant E said about the part graph: ”Yeah, that’s great. It’s

basically more like a hierarchy for ... well not a library but kind of a network

of all that stuff [parts].”

But all participants also expressed some concern that the part graph may

not benefit every type of music. Participant C said about the custom part

abstractions: ”It makes sense, indeed. Well, I’d say maybe not for every

3.5. FROM DESIGN TO USER EXPERIENCE 65

type of music.” We asked for which type of music it would be appropriate.

He said, ”Well, everything that is to some extent relatively clearly arranged

[overview], or a bit simpler structured. I think, if you have some extreme jazz

piece where something different comes all the time [hardly anything repeats],

you can, of course, maybe not combine [parts] as easily. But in itself it’s [the

part DAG], of course, definitely interesting.”

Some participants were, at first, irritated by the fact that, on the highest

level in the part library, unrelated songs would share a common timeline.

Participant D said: ”Ah, ok ok, because I thought that this is separated in

the middle into ’project’ and ’song’.”

Participant A said: ”It looks like one song, but it’s actually two.” It took

her a moment to embrace the idea that there is no predetermined concept of

”project” or ”song” and that a whole body of work can be seen as one piece

and, just as well, a single verse can be viewed as a mini library that holds

some bars for future use.

The musical quantization in the event editor raised questions about the

internal temporal structure of atomic parts. Participant D asked: ”What is

actually the smallest [shortest part] that you can enter? Are there, in the

end, just single bars left or something when you enter the chorus itself ...

because a pre-chorus would probably not make sense somehow, I think. I’d

rather have bar 1 and bar 2 [and so on] at the end [at the leafs in the part

DAG] [...] otherwise it would get too confusing I could imagine.”

Participants were curious about the length of parts and how it is measured

(beats, seconds). But it didn’t stop there. They also inquired about the

actual meaning of parts and what it means to reuse them. They even offered

some opinions on that question:

1. A part defines a certain rhythmic structure.

2. A part only defines a number of beats.

3. A part should convey no temporal data at all. It should only serve

to structure material semantically, i.e. to distinguish temporal entities

66 CHAPTER 3. EVALUATION

like verses, ideas, songs or projects from one another.

3.5.5 Global Events

Because events are visualized as a preview of the actual data they refer

to, users understandably wished to jump right to the data by ”opening” or

”going into” the [composed] events, i.e. they would navigate more directly

through the content.

Participant E stated: ”I believe it makes more sense, when you don’t

open the next layer here [sub-node representations] but there [in the score

matrix through its cells/events] [...] so that, when I click on that [an event],

the level inside that opens. And not here, that doesn’t make sense somehow.

So that you say ok, what is inside this clip [event]? and then again what is

in this clip in this clip ...”

From there, a profound discussion with participant E illuminated the

whole issue of global events and hierarchy. He expressed the wish that custom

abstractions should follow a very simple principle, although his ideas seem

already to be realized by our model:

”But I would actually find it greatest if you, for now, couldn’t do

stuff like MIDI or so, but the only thing you could do would be to

drag really just one sample onto such a track [atomic voice], and

the only action that would be available would be to play that sam-

ple by clicking [creating an event for the voice] [...] And because

you could go deeper and deeper into it [create more abstraction

layers] it [the musical structure] becomes complex.”

The sketches he drew to explain his point, made his idea clearer and

showed that he had grasped our intention and vision on a deeper level than

the other participants.

Translated into our model and terminology, his suggestion amounts to the

following: Atomic voices and their events would not necessarily refer to wave

files (samples) but could actually refer to a performance. Thereby, complex

3.5. FROM DESIGN TO USER EXPERIENCE 67

hierarchical abstractions could be built, without even making use of voice

groups and ”global” events. This would bring back the benefits and elegance

that we lost when abandoning ”naive abstraction” [18].

Interestingly, he sketched events as triangles that look like play buttons.

This may signify several intentions: The content that events refer to is not

looped but played exactly once. The length of the content is significantly

shorter than the part in which the event is played. The starting time is the

most important property of the event. The event is really just a marker that

plays (triggers) some content (performance or sample) rather than being a

container of content itself.

3.5.6 Loops and Variation

All participants stressed the importance of variation within repetitions. That

is, it should be possible for a repetition or loop to deviate a little from its

original. Participant D stated: ”Well, in my process, I try not do make

everything the same. Maybe with beats, there it would totally make sense,

but with a chord or fill-in, it would also be interesting to be able to say But

in the third verse, I’d like to have a little alternative.”

The inheritance and variation mechanism that our global loops offer

caused some concerns that it might be too complicated (participants A, C)

or simply unnecessary because the part graph already allows for repetition

(participant E). Participant E said:

”Yeah loops are an interesting issue. [...] In Ableton, you basi-

cally only loop the clips. [explains how] I could imagine that one

probably doesn’t always want to loop everything. [...] There is

so much [software] out there with loops and, actually, If you do

it in that structure [our model], it’s almost that you don’t need

loops anymore. I would possibly try the idea to get away from

loops, honestly, because I also know several [musicians] who say

there is already so much loop-based music. ... rather try to do

something with the linear aspect again.”

68 CHAPTER 3. EVALUATION

The concern about our looping mechanism is also understandable since

our screen designs didn’t yet communicate that aspect in great detail.

A discussion with participant D illuminated a crucial aspect about our

suggested mechanism for loops and variation. First, we clarified how our

design allows the user to create any kind of variation – not just progressively

changing loops.

We discussed an example like the one in Figure (3.4). Two verses, Verse

A and Verse B in a song may have a chorus between them. The user wants

both to be of the ”type” Verse but to also to have them expose some unique

little variations of their base type.

Song

Verse A Chorus Verse B

Verse

Figure 3.4: Example graph that uses a composed part to define a part type

The Verse-part that contains both verses and, thereby, defines their type

or basic structure would not itself be part of the song because, in the song,

the two verses have a chorus between them. Therefore, the Verse-part would

not be contained in the temporal hierarchy of the song. It would not serve

to define the temporal structure of the song but only to provide both verses

with an exclusive common parent.

And that poses two design challenges: First, how does the user decide

which parent of a verse he means when navigating upwards, the more general

verse or the song? And second, how does the interface signify in the song

that the verses have another common parent aside from the song, i.e. that

they are of the same type?

3.5. FROM DESIGN TO USER EXPERIENCE 69

3.5.7 Input and Integration with other Software

Some participants stressed the fact that recording their own samples with

their own real instruments is very important to them, particularly in the

early and creative phase of experimentation and composition. Participant B

became very explicit at this point:

”If you want to create a software like that, always come from

the instrument [keep real instruments in mind]. I find that very

important. What I find interesting now [about the idea of HAIL],

you could tinker a lot with sounds, you know, you have different

songs and ideas there and juggle with these parts, and that brings

enormously many possibilities to be creative. That is great. But

you must never forget the instrument with which you first bring

in the sound [into the software]. Even if it’s just a single guitar

chord that you record. And then you put that in different parts.

You must not loose sight of that or [of] how the musician thinks

who plays his instrument.”

Participant D asked: ”But what is ultimately the goal? Do you want to

create an interface with which you can completely produce something, or is

it more like a preceding step.” We answered that it is more like the preceding

step. He said: ”So, it’s more something like a sketch book, right? [...] But

then, I’d find a recording functionality definitely necessary, so that you can

build little loop machines, so to speak.”

Some participants even imagined our proposed concept as kind of a plugin

in a conventional sequencer. With participant B we discussed a certain spec-

trum between using prebuilt sampler instruments that are based on samples

of single notes and, on the other end, recording the whole song by yourself

live. Many musicians work in between those extremes, recording snippets and

chords, building custom sample instruments. In this context, Participant B

offered an interesting idea:

70 CHAPTER 3. EVALUATION

”Yes, exactly, that’s true, I could imagine that very well here [in

HAIL]. If I have a rhythm sample and can record that quickly and

use it in other software, you know. Create something by yourself

and then being able to access it again and again wouldn’t be

bad, of course. Because here [in Sonar and his setup], it’s always

program-specific, and you always have to load this again and that

again. And the time [it takes] to get into [learn] a program is also

enormous.”

What he implied was the idea that our system would be used to create,

store and organize recordings and then provides these recordings across dif-

ferent software sequencers as an instrument plug-in. Of course, that would

pose the question what would happen to our time dimension, since our design

represents a sequencer in itself. But the idea is inspiring.

3.5.8 Limitations

Overall, confronting participants with our model, in screen mockups and im-

plementation showed that the proposed concept is not as conceptually chal-

lenging to music software users as we expected. And the evaluation provided

many valuable specific clues about how we should proceed development.

However, mere understanding of our design concept doesn’t imply that

it inspires creativity or is even practical. Because our mockups and imple-

mentation didn’t allow for very much user testing, it was difficult to provoke

many questions and comments and we got only little direct feedback on how

the design would effect creative processes in practice.

For example, participants were able to learn what the graph editing op-

erations mean in the prototype. However, we’re not sure how quickly they

would be able to interpret and apply those operations in terms of musically

meaningful actions.

Our prototype fosters and rewards a certain mindset or approach to the

composition process that is quite untraditional. For instance, the idea to

3.5. FROM DESIGN TO USER EXPERIENCE 71

reuse time sections (parts) from other ”songs” seemed rather foreign to most

users. In the timeframe of the assessments, participants could hardly absorb

the fact that time sections are to be used in a more general sense and that

categories like ”song” somewhat evaporate. This was especially the case

with participants who have mainly experienced linear sequencers and rarely

experimented with other types of music software like trackers, programming

environments, live performance tools or Ableton Live.

The novel degrees of freedom that our design offers may spawn more

creativity in amateurs or users that have preserved themselves a ”beginner’s

mind”. But further studies are needed to reveal how exactly our design

approach would effect actual work flows and creative outcomes.

So, the limitations of our evaluation leave many open questions. On the

other hand, participants were not only able to understand the design but

also expressed great appreciation for its overall concept. Participant E who

seemed to have grasped the vision behind that concept better than other

participants commented on it in a follow up email: ”I thought a few more

times about your idea and have to say I like it more and more, that really

has potential!”

72 CHAPTER 3. EVALUATION

Chapter 4

Discussion

4.1 On the Validity of our Evaluation

We could only test a prototype and not a released product. Moreover, the

prototype partly consists of mockups. Therefore, some negative outcomes

that the assessments highlighted are consequences of an incomplete imple-

mentation and tell us nothing about requirements or design. Examples are:

1. A lack of performance impedes panning/zooming.

2. Panning lacks the bouncing effect.

3. Events can’t be drawn from right to left.

4. The waveform previews on events are inconsistent.

The fact that participants spent less than an hour with a prototype in an

artificial setting instead of one week with a real product at home limits the

validity and expressiveness of this kind of evaluation in even more ways:

1. The prototype lacks the amount and diversity of prebuilt content that

it would contain as a real product.

2. The prototype focuses on some requirements and does not yet satisfy

all of them. However, all the requirements work together to realize a

certain concept. None of them is completely redundant.

73

74 CHAPTER 4. DISCUSSION

3. Participants had hardly any time to experiment with the interface.

This is critical since adapting to a novel domain model takes time.

4. Participants could not use the prototype in the context of their own

material and process.

That said, we are pleased that our assessment sessions still tell us some-

thing about how its outcomes relate to requirements.

4.2 Creative Applications

Our hopes that participants would, by themselves, come up with interesting

applications of our proposed system were a bit too optimistic. It was already

difficult to bring this artistically inclined user group to reflect on their own

working processes. It was even more difficult to elicit feedback on a mere

concept for a tool in less than an hour.

We occasionally steered the conversation so that participants were able

to notice, with as little assistance as possible, some of the more interesting

ways of using our proposed system. This helped them to get a feeling for the

bigger intention behind our design and that, in turn, provoked questions and

moved the conversation forward.

So, in the assessment sessions, we established some creative applications

of our concept together with the participants. As we mentioned earlier,

participants had no problem following the working principle of the proposed

interface concept.

Now, the way they responded to those advanced applications told us that

they would have discovered those possibilities by themselves had they been

able to play around with a fully functional implementation. For instance,

Participant E arrived at the realization that chords could be triggered by

single events: ”... so you would basically actually put C, E, G or so into one

level [composed voice] and then go one [abstraction] level higher and play

the whole thing. Yes, cool, I find that awesome.”

4.2. CREATIVE APPLICATIONS 75

However, the only conclusion about creative applications that we can

safely draw from our evaluation is that participants not only understood

how the design enables these advanced use cases but they also appreciated

those possibilities.

Many of the ideas that we developed with the participants relate to voice

groups and the emulation or ”creation of instruments”. Some of these appli-

cations are:

1. Creating chord instruments

2. Creating instruments from their own samples

3. Creating instruments with custom scales

4. Creating instruments that mix tonal and atonal sounds

5. Creating instruments from vocal recordings

Another utilization of voices was to reference the same voice several times

in order to create complex rhythms by layering different events for the same

voice within the same part.

This is analog to repeating parts on the time-axis. Here, our approach to

treat and present both dimensions equally paid out since participants used

the analogy to deduct that the same can be done with voices. This repetition

was enabled by – and is in line with Requirement #35 [19].

Of course, the voice-related use cases refer directly to Requirement #21.

In particular, the custom recursive structuring that this requirement demands

opens up all the creative options described above.

Most of these options are unavailable in traditional DAWs like Garage-

Band, an they’re definitely not available at the level of simplicity and uni-

formity that is innate to our design. Our design conveys all these different

use cases through only a minimal number of contexts. Thereby, it adheres

firmly to the fundamental Requirement #7 [19].

76 CHAPTER 4. DISCUSSION

As mentioned earlier, participants were a bit more reluctant to utilize and

reuse parts (temporal abstractions). Still, they found some interesting use

cases, which are only possible because our design satisfies Requirement #25:

1. Creating a setlist, playlist or album

2. Creating different variants of a song structure

3. Exploiting navigation and part order for live improvisation

4. Comparing unrelated material side by side

4.3 Refining Requirements and Design

Finally, we answer the third of Johnston’s [26] three questions for the user

study:

”What are the relationships between the characteristics of the

instruments [musical interfaces] and the musicians’ experiences?”

We already have an account of the user experience from answering Johnston’s

second question, and that necessarily involves the relation between experience

and design. What we’re, now, interested in are the deeper characteristics of

our design that are manifestations of underlying requirements.

In other words: How do the requirements determine user experience? The

answer to that will allow us to enter the next development iteration where

we refine those requirements and approach a re-design.

4.3.1 Mobility

First, we should explicate the tablet platform as a new requirement. We saw

in Section (3.4) and many other places how well the tablet suits our purpose

[17, 18, 19]. Now, part of refining the requirements is to make them address

the conditions of mobility and book-sized touch screens.

4.3. REFINING REQUIREMENTS AND DESIGN 77

Requirement 37 (Tablet) HAIL should run on tablets and make optimal

use of mobility, touch input and screen space.

These refined requirements now apply more specifically to our design

and prototype, which we called the ”Human-Audio Interaction Lab”, so we

articulate them as <HAIL should ...> instead of <The tool should ...>

4.3.2 Event Editor

Zooming

Participants sometimes zoomed in unintended directions. This somehow fails

Requirement #10 [19], which demands that navigating 2-dimensional con-

tent representations (like the score matrix) should be made simple and fast

through fluid panning and zooming.

Our choice of the tablet platform is a result of many requirements and this

is only one which tablets greatly support. However, none of the requirements

assumes tablets being used, thus they don’t specify how zooming and panning

should work with a touch interface. No requirement is really missing but the

ones that apply may be too non-specific.

We see two possible approaches that might solve the problem:

1. We might lock the zoom direction like GarageBand does. This way,

users can only zoom in one direction with one gesture, the disadvantage

being that they have to release all fingers and start a new gesture

whenever they intent to change both zoom levels.

2. The problem of unintentional zooming arises particularly when both

fingers are close to each other because, then, even small movements

are relatively large compared to finger distance. It is likely possible

to process touch events in a way that is more sensitive to the user’s

intent. For example, we might start such experiments by introducing

a minimal distance between fingers for performing a zoom.

78 CHAPTER 4. DISCUSSION

Editing

Some participants said they would want to manipulate events by moving,

cutting, shortening and extending them. These operations are absent in our

prototype. The requirements demand temporal- and voice abstractions but

say nothing about the role of notes, events or score data.

Again, the requirements are quite general and don’t prematurely fix de-

sign features that can only result from experimentation. Event editing is in

line with the overall imperative of simplicity (Requirements #3 - #11) but

specific requirements for editing events with a touch interface are missing.

We already implicitly applied certain criteria when we employed touch

gestures in our design. Before we add new editing gestures, we should make

those underlying criteria explicit:

Requirement 38 (Proximity) HAIL should present entities spatially

closer together the tighter they are semantically related [6].

Requirement 39 (Economy) HAIL should expect easy gestures for fre-

quent operations and complicated gestures for rare operations.

Requirement 40 (Directness) HAIL should employ touch gestures in a

way that maximises articulatory- and semantic directness [17].

These three requirements may seem quite general, common sense or even

banal. But together, they tightly restrict our design of further editing oper-

ations. For example, picking a tool (like in Logic Pro) or picking an action

to perform after tapping an event (like in GarageBand) appear as two sub-

optimal solutions in the light of the above requirements.

Now we require HAIL to offer the set of editing operations that users

apparently need the most.

4.3. REFINING REQUIREMENTS AND DESIGN 79

Requirement 41 (Event Editing) HAIL should offer ways to edit events,

including operations to create, delete, move, shorten, extend and cut.

And this is how we would map the editing operations to gestures in a way

that balances all the above requirements:

Operation Importance Gesture

Delete Very High Tap

Create Very High Tap or draw

Move High Drag and drop (not the ending if visible)

Shorten Medium Drag and drop ending (if visible)

Extend Medium Drag and drop ending (if visible)

Cut Low Long press, swipe outside (up or down) at

intended position

Connect Very Low Long press, swipe outside (left or right) to

neighbour event

To make length changes very direct, we’d have to give up the interval marking

(see the project [18]) and, with that, the possibility to delete several events

through one gesture.

4.3.3 Graph Editor

Sometimes, participants got confused by the abrupt switches when navigating

up or down in our keynote prototype. They tended to lose the context of

what happened during those steps.

We observed that navigating custom abstractions lacks a bit of continuity

and context. Our design failed to completely satisfy the exploration require-

ments, particularly #17 and #18 [19]. This is not a question of the task itself

or the underlying model but of their presentation through the interface. We

might improve our design with the following changes:

80 CHAPTER 4. DISCUSSION

1. Navigating up to a super-node should be visualised through an ani-

mation that continuously collapses the currently visible sub-nodes into

one while expanding the newly visible sub-nodes.

2. Navigating down to a sub-node should be visualised through an anima-

tion that continuously expands the selected sub-node while collapsing

all the others.

3. The user should be able to enter a sub-voice and a sub-part with one

gesture by double-tapping in the event-editor, analog to entering either

one of both sub-node types.

4. The user should be able to navigate up to the super-part and the super-

voice with one gesture by a two-finger tap in the event-editor, analog

to moving up to either one of both super-node types.

Improvements (1) and (2) would provide more continuity and context to the

user and help satisfying Requirement #17. Improvements (3) and (4) would

increase the directness of navigation and better satisfy Requirement #18.

Together, those four improvements would give rise to a powerful variant

of semantic zooming. The user could smoothly zoom in on a cell of the

score matrix, revealing more details and editing options. But still, there

would be discrete abstraction levels, all using the same visual language, so

the user would always know exactly what details he can effect at the current

abstraction level and how he would do so.

4.3.4 Parts

Requirement #25 demanded custom temporal abstractions. This require-

ment is the reason that parts exist in the prototype. Participants loved the

idea of having explicit parts that can be moved around like columns to edit

the overall temporal structure of whatever they may compose.

However, as we described before, the exact nature of parts is not as fixed,

and our study inspired us to reflect on aspects like the internal structure of

4.3. REFINING REQUIREMENTS AND DESIGN 81

atomic parts and the relation between parts and score (event-) data. Our

design sketches out one approach, but the assessment sessions hinted that

there may be others and that the design should be more specific about those

aspects.

To effectively explore the solution space, we should explicate our goals.

We need to clarify the nature of parts beyond the characterization that Re-

quirement #25 provides. While Requirement #25 should be made more

specific, requirements for quantization and (composed) score data have yet

to be written. In the following, we’ll explain the ramifications of re-thinking

parts.

4.3.5 Atomic Parts and Quantization

It didn’t surprise us that users wanted to position events with more precision

than the arbitrary quantization of our implementation allows. In contrast to

the voice graph, event editing requires a fine grained differentiation within

atomic parts. The user must be able to position events with millisecond

precision within atomic parts.

Also, we envisioned that the quantization would ultimately have to adapt

to zoom level. Because touch interaction requires input elements to have

a minimal size on screen, the interface should always apply the most de-

tailed quantization raster with which the smallest quantization cell is still

big enough on screen at the current zoom level. Therefore, the user could

only position events as precisely as the current zoom level allows.

Zoom level would determine the detail level of data visualization. It

would also set the detail level for data manipulation. In terms of Direct

Manipulation, output- and input language would be close together [17], which

is a really good thing.

Quantization involves a discrete subdivision of time intervals (parts) into

shorter time intervals. It is very obvious that the quantization has to be

musically meaningful and realize true musical quantization. We summarize

this as a new requirement:

82 CHAPTER 4. DISCUSSION

Requirement 42 (Quantization) HAIL should employ a musically

meaningful quantization raster that adapts to zoom level.

The question we have to answer is how we recursively subdivide atomic

parts in order to provide this meaningful zoom-dependent quantization.

In the seminar paper [17], we mentioned that, ”typically, time spans are

recursively partitioned into a prime number of sections of equal length.”

And that applies at all temporal scales, particularly around bars, beats and

fractions of beats, where rhythmic patterns unfold. We see two ways to

implement these insights:

1. For atomic parts, the user may choose a custom chain of prime numbers,

i.e. a rhythmic structure.

2. The interface chooses the most likely rhythmic structure for atomic

parts. Without considering additional context, this would mean to

always divide into two intervals of equal length.

Ultimately, the interface will have to provide a combination of both ap-

proaches. A reasonable first step would be to implement only variant (2).

This would suffice to demonstrate the adaptive quantization while covering

a wide range of application scenarios.

4.3.6 Parts and Scores

One reason why it is a bit hard to grasp what role score objects (groups of

events) could play in our model is how tightly related event lists are to the

temporal structure of parts. We want to use that structure for the quantiza-

tion of events, not just with respect to visualization and editing but possibly

also in the way event lists are actually stored in a data structure. Now that

we have explained how a quantization tree might look like (previous section),

we can approach the notion of a Score as a distinct entity in our model.

4.3. REFINING REQUIREMENTS AND DESIGN 83

Participants liked the idea of building complex rhythms by looping dif-

ferent event lists of different musical length within the same part. We would

greatly support this if each event list could be edited in relation to its own

time structure. Therefore, each event list would have a quantization tree as-

sociated with it. To make such an association, we finally need to acknowledge

those event lists as explicit Score entities.

Let’s just say an Atomic Score has a list of non-overlapping events which

is ordered by the start time of events. It also has a length, measured in the

same units as the length of events.

We still might ask, whether the quantization tree is an innate quality of

the score or whether it is just a way the interface communicates that score.

Does the model actually use the quantization tree as a data structure to store

the timing of events or does quantization just help the user to edit events?

Both options have their advantages. The latter allows us to present the

same score in the context of different quantization trees, but the relation

between that structure and events might be lost. Event timing could not

anymore be derived from discrete numbers and be more of a floating point

value.

4.3.7 Musical Length

Whatever the relation between quantization tree and score might be, atomic

parts would not anymore be associated with a quantization tree. So what

data do atomic parts convey at all? At least, they must somehow help to

determine the actual duration of parts and performances in seconds.

We intentionally left the question open in what unit the timing (start

time and length) of events and the length of scores is measured because we

need to keep scores general enough so that different scores can be combined

within the same part. And while it might suffice to leave all the timing of

scores in relative measures, parts must, at some point, introduce an absolute

measure.

We are confronted with a trade-off between reusability and simplicity.

84 CHAPTER 4. DISCUSSION

Within that trade-off lie multiple possible approaches to delineate the quality

of length and duration of parts. We’ll briefly describe one approach that

appears as a reasonable compromise. However, this aspect demands further

experimentation.

We suggest, the design should somehow adapt the way practically all mu-

sic software and music notation systems handle length and duration: Beats

serve as the currency for musical length, and a tempo in beats per minute

(bpm) determines actual duration.

Every atomic part would have a length in beats. And every part may

or may not define a tempo. If a part does not define a tempo, it inherits

the tempo from the next ancestor that defines one. The part library as the

ultimate ancestor of all parts would always define a tempo and that would

act as a default value. Also, new atomic parts could have a default length, so

the user wouldn’t need to worry about any of that unless he wants to change

something.

We’re aware that, in some cases, we’d need a way to decide which of

the possibly multiple ancestors determines the tempo of a part. We may

introduce the notion of an ”active parent” but we won’t go into such details

here.

4.3.8 Composed Scores

An atomic score, as we introduced it over the previous sections, basically

holds a rhythmic pattern that can sit in a cell of a score matrix. It relates to

just one voice. However, most often, the events for several different voices to-

gether make up musically meaningful scores like melodies, arpeggios, chords,

and even drum beats as we saw in Figure (2.4).

Even conventional DAWs incorporate some notion of such composed score

objects in the form of regions on MIDI tracks, where they can be moved,

copied, referenced, looped and even be used across different instruments

(voices). So the purpose of identifying such objects is to apply and reuse

them in different contexts.

4.3. REFINING REQUIREMENTS AND DESIGN 85

In our model and design, a composed score would comprise one or more or

all the atomic scores in the column of a score matrix. It would be applicable

on all levels of abstraction and it should be reusable and available to all

projects and working contexts.

Since we have no explicit requirements for composed scores yet, let’s

summarize the above in a new requirement:

Requirement 43 (Composed Scores) HAIL should offer the user score

objects that can hold tonal scores for composed voices. He can apply them

at any abstraction level and reuse them within different voice groups.

To make this work, we need to introduce a level of indirection. Music

software and score notation use tonal keys and drum types for that, and we

can very well adapt this convention.

However, the general nature of our design requires the user to assigned

keys or drum types to the sub-voices in a voice group before he can apply

some existing composed score to that group. That way, the system can map

the atomic scores in the composed score onto the sub-voices.

Another issue would be whether and how the user could be enabled to

apply composed scores in the way of MIDI effects, or more general, how he

might concatenate composed scores.

For example, he has a composed voice that represents a piano instrument.

And there is a composed score that plays a melody on that piano. Now he

might append another composed score to that which would transform every

note that is played into an arpeggio on that note.

He could not just create arpeggios but also chords, rhythms, melodies,

delays and any kind of pattern. Because the transformation is always relative

to the incoming (base) key, concatenation could perform all kinds of score

transformation, even such simple ones as transposition.

So, composed scores pose a huge challenge to us as designers and offer

powerful tools to the user. May be the challenge can’t be met perfectly as it

requires decisions on trade-offs, but we’ll surely tackle it in the future.

86 CHAPTER 4. DISCUSSION

4.3.9 Global Events

Our design includes the possibility to edit global events, that relate voice-

and part groups. Without such a concept nothing can be edited at higher

abstraction levels and we were hardly surprised when participants missed

that functionality in our implementation. Strictly speaking, we need global

events to just really satisfy Requirements #21 and #25.

But the assessments made it clear that our solution to those Requirements

is not the only possible solution, much less the optimal one. In particular, the

way events relate to (composed) voices didn’t always match the participant’s

intuition.

Suppose a composed voice has event lists for its sub-voices but does not

loop these event lists but, instead, has a non-repeating score over the whole

length of the part. Global events that trigger the whole group wouldn’t make

much sense. On that higher level, the user would rather draw one event that

reaches from the very beginning to the end of the part to make sure the score

inside the group gets played.

In that respect, we fully understand why participant E wanted those

global events to reference performances instead of (composed) voices.

For once, it is easier to imagine the event referencing a clip that is signifi-

cantly shorter than the part in which it is referenced. The samples of atomic

voices already have that property. They have another simplifying property:

The sample file that an atomic voice references applies across all parts, while

the internal score of a composed voice depends on the part. And that is also

one reason why we we abandoned the idea of voices referencing performances

when we experimented during the project.

However, participant E inspired us to bring this idea back for atomic

voices. Atomic voices should allow to not only reference sample files but also

to reference whole performances as long as that doesn’t introduce any cycle.

Of course, the voice would still be atomic and, although its sound may be

complex, that sound (the referenced performance) would still apply across

all parts.

4.3. REFINING REQUIREMENTS AND DESIGN 87

High-level editing clearly requires us to extent our solution and experi-

ment with some more variants.

4.3.10 Loops and Variation

We didn’t even expect the subject of variation (Requirement #36) to come

up at any point. But our looping mechanism opened up a wide range of

applications to the user and our participants were able to see how loops can

be utilized to realize types and inheritance.

However, the discussion with participant D also showed that this way of

using the system somehow requires the user to know what he is doing. The

Verse part in Figure (3.4) references two verse variants. The Verse itself,

together with whatever voices the song uses, would make a performance that

”plays” both verse variants. The fact that the Verse is not used in this way

and rather stores a type is not explicit in the model but rather implicit and

in the user’s mind and intention. Participant D alluded to how difficult that

would actually make collaboration. A different user might not know whether

a part is intended as a type or actually as some piece of music.

There are some other issues with this kind of variation. It only works

with loops, because they can repeat over each sub-part which has the effect

that the whole loop is ”passed on” to each sub-part.

Types would have to be visualized so that the user would a) immediately

identify a variant as a mix of reference and original and b) immediately see

which material is of the same type.

Another issue is that, in the current design, the user is responsible to

match the lengths of event lists so that they are in sync with each other in a

meaningful way.

The question we’ll have to tackle in the future is whether and how our

design should support the use case of variation through inheritance more

explicitly.

88 CHAPTER 4. DISCUSSION

4.4 Lessons for CSTs

Here, we address the aesthetics/theory part of Johnston’s methodology [26].

First, we ask what general hypotheses about CST design we can derive from

our work.

4.4.1 CST Design

While the requirements of simplicity, freedom and exploration translate fairly

easy to other domains, the interesting aspects of our work surely are custom

abstractions and their re-use across the boundaries of conventional defini-

tions. What made this particularly difficult for us to actualise is the 2-

dimensional nature of musical compositions, as they are time-dependent and

deeply layered. In addition, music is not intrinsically visual but rather ab-

stract, requiring us to find an effective visualisation.

Other creative products don’t exhibit all these three intricacies in com-

bination. For example, video is time-dependent but not deeply layered and

also visual. Text and program code is linear but not deeply layered and has

a natural visual representation. Graphics are not time-dependent, may be

deeply layered and are visual. And so on.

Compared with music composition, it would be quite trivial to provide

custom abstractions and an integrated library of material in these other do-

mains. And indeed, we find glimpses of these qualities in other tools.

The most advanced domain in this regard seems to be software devel-

opment, where custom abstractions and extensive re-use are innate to the

process. We also find custom abstractions in graphics design. For example,

OmniGraffle lets the user group objects together. He can treat a group like

any other object and also have groups within groups.

On the other hand, extensive re-use as Requirements #32 and #33 de-

mand is practically non-existent beyond the domain of software development.

Considering how essential this is for creative work [19], future CST research

and design should tackle the question of how to evolve data organisation

4.4. LESSONS FOR CSTS 89

from separate project files to one integrated library.

4.4.2 CST Research

Now, let’s review the the methodology that we applied. We experienced

an interesting tension between our desire to explore unknown territory and

our desire to do so through the scientific method. The literature, including

Johnston’s work, emphasises the special role of creativity support tools [19],

and the thesis at hand magnified that aspect.

With novel CST interfaces, the question is not so much how they apply

to certain use cases. The question is how they inspire users to come up with

interesting use cases. The interface is supposed to offer a new perspective on

a known subject and, thereby, allow its users to objectify and challenge their

unconscious belief systems, promoting open-mindedness and creativity.

So, the need to innovate the tool is ingrained in the objective to make

it suitable for creative work. We can’t encourage creativity without being

creative. In a publication on evaluating CSTs, Hewett et al. [21] stated:

”If one optimizes current practices (that is, what people do),

one can expect only incremental improvements in computer-based

support for the creative process. On the other hand, understand-

ing why people do what they do can lead to new insights into the

forms computational support can take.”

To understand why creative practitioners do what they do, researchers and

designers must immerse themselves deep into the respective domain and that,

by its very nature, limits somewhat the possibility of deriving general guide-

lines from their domain-specific work.

Evaluation must be tailored to these circumstances, where evaluating

incremental improvements of established interfaces types may be possible

but is insufficient.

So what about evaluating leaps that redefine the very DNA of an inter-

face? We suggest that CST researchers should be skeptical of short term

90 CHAPTER 4. DISCUSSION

studies because real innovation of CSTs involves more than new graphical

mappings for known concepts and is often not as flashy. And this also high-

lights the limited expressiveness of our own evaluation.

Despite all efforts to break down the research and design of CSTs through

methodologies, principles and guide lines, most authors acknowledge that

CSTs require more of us: While placing one foot on the solid ground of

science, we must be confident enough to step, with the other, into a place

of uncertainty, where ideation and intuition must be applied. The goal to

support creativity requires not just ergonomics but actual interaction de-

sign. And that, as Donald Norman [36] suggests, is unfortunately not yet an

engineering discipline but still an art form.

In this context, art and engineering don’t really present a trade-off, be-

cause one side cannot easily be traded for the other. Instead, one has to find

a balance (the sweet spot) between them.

This leads to an important question for the science of CST design: Should

researchers tweak existing interfaces in spectacular ways to investigate spe-

cific boundaries or should they develop new comprehensive interface concepts

that have a chance of actually progressing real products? The context of aca-

demic research seems to lend itself more to the former approach, and that

makes us even more thankful for the opportunity to also explore the latter

approach in this master thesis.

Chapter 5

Conclusion

5.1 Summary

We’ve come along way. Back in the seminar paper [19], we listed 9 potential

contributions that we aspired to deliver over the course of seminar, project

and thesis. By now, we’ve tackled all of them, and it is time to reflect.

Seminar The challenge in the seminar [19] was to find an entry point

that lets us make use of domain knowledge and intuitive insights but also

adheres to a structured methodology. This amounted to a long but all the

more substantial orientation process. We contributed an extensive literature

survey and introduction to the domain as well as a rather complete list of

requirements for novel music sequencers.

Project The challenge in the project [18] was to narrow the requirements

down to the most essential ones and find a model that enables an interface

to satisfy these core requirements while being compatible with all the other

requirements. Another challenge was to document this process as a linear

progression to make it understandable. We contributed a domain model,

a clean and extendable code basis which reflects that domain model and a

rudimentary implementation of an interface prototype.

91

92 CHAPTER 5. CONCLUSION

Thesis The challenge of this thesis was to demonstrate a big idea based on

one design concept exemplified by an incomplete implementation and, then,

to evaluate potential innovation of creativity-support. We contributed an

example concept with the help of mockups, an account of user experience with

that partially implemented prototype, an analysis of how user experience

relates to the design and its criteria, refined criteria, approaches to develop

the design further and a discussion of the consequences that all of this has

for CSTs.

The idea behind our Human-Audio Interaction Lab is too comprehensive

to be realized within one master subject. It may have been beneficial for this

thesis to narrow its objective down even more strictly.

On the other hand, we gave an introduction to the vast field of HCI

research that grows around computer music, offered a broad differentiated

view on the rich application domain of music composition, identified a dis-

tinct unfulfilled need and, most of all, developed a clear vision for novel music

sequencer interfaces and for creativity-support tools in general.

5.2 Outlook

Before even thinking about any further conceptualization, future work faces

some specific implementation challenges that result from our refinements of

requirements and design.

A caching mechanism is necessary to improve performance and visualiza-

tion. Panning/zooming has to be fine-tuned. For event editing, we have to

fix bugs and add features. Navigating through the graphs has to be enriched

with new gestures and animations. And much more.

Then there are also challenges regarding modeling and design, for instance

the library, score- and event groups, tempo and duration, and more.

The third challenge is to satisfy more of all the requirements on which

we did not focus, for example regarding relative mixing, mix groups, audio

processing and so forth.

5.2. OUTLOOK 93

Another challenge will be to adjust the evaluation approach and to re-

evaluate HAIL at a more advanced state. It is also possible that a broader

perspective that contrasts fundamentally different solutions would create bet-

ter results than endlessly iterating one concept [10].

Finally, we might look even farer out into the future and think about how

HAIL could integrate with other apps through AudioBus, data formats and

storage systems, how it might benefit from a combination with a desktop

version and, ultimately, how it might fit into the context of sharing and

collaboration.

94 CHAPTER 5. CONCLUSION

Bibliography

[1] J. T. Bernstein, L. Dong, J. Missig, and M. Hauenstein. Prototyp-

ing: Fake it till you make it. Talk at the WWDC 2014, Apple De-

veloper Videos for Enterprise App Developers, https://developer.

apple.com/videos/enterprise/#56, 2014.

[2] D. Bolchini, D. Pulido, and A. Faiola. Feature: ”paper in screen” pro-

totyping: an agile technique to anticipate the mobile experience. inter-

actions, 16(4):29–33, 2009.

[3] C. Brower. A cognitive theory of musical meaning. Journal of Music

Theory, 44(2):323 – 379, 2000.

[4] E. A. Carroll, C. Latulipe, R. Fung, and M. Terry. Creativity factor eval-

uation: towards a standardized survey metric for creativity support. In

Proceedings of the seventh ACM conference on Creativity and cognition,

C&C ’09, pages 127–136, New York, NY, USA, 2009. ACM.

[5] J. Carter, B. Eaglestone, N. Ford, and P. Holdridge. An analysis of

interviews with composers from a cognitive styles perspective. In Inter-

national Computer Music Conference, pages 391–394, Ann Arbor, MI,

2009. International Computer Music Association, MPublishing, Univer-

sity of Michigan Library.

[6] D. Chang and K. V. Nesbitt. Developing gestalt-based design guidelines

for multi-sensory displays. In Proceedings of the 2005 NICTA-HCSNet

Multimodal User Interaction Workshop - Volume 57, MMUI ’05, pages

95

https://developer.apple.com/videos/enterprise/#56
https://developer.apple.com/videos/enterprise/#56

96 BIBLIOGRAPHY

9–16, Darlinghurst, Australia, Australia, 2006. Australian Computer So-

ciety, Inc.

[7] E. Cherry and C. Latulipe. Quantifying the creativity support of digital

tools through the creativity support index. ACM Trans. Comput.-Hum.

Interact., 21(4):21:1–21:25, June 2014.

[8] D. Cronin. Feature: Into the groove: lessons from the desktop music

revolution. Interactions, 15(3):72–78, 2008.

[9] N. Donin and J. Theureau. Theoretical and methodological issues re-

lated to long term creative cognition: the case of musical composition.

Cogn. Technol. Work, 9(4):233–251, 2007.

[10] S. Dow. How prototyping practices affect design results. interactions,

18(3):54–59, 2011.

[11] M. Duignan. Computer mediated music production: A study of abstrac-

tion and activity. PhD thesis, Victoria University of Wellington, 2008.

[12] M. Duignan, J. Noble, and R. Biddle. A taxonomy of sequencer user-

interfaces. In International Computer Music Conference. Ann Arbor,

MI: MPublishing, University of Michigan Library, 2005.

[13] M. Duignan, J. Noble, and R. Biddle. Abstraction and activity

in computer-mediated music production. Computer Music Journal,

34(4):22–33, 2010.

[14] B. Eaglestone, N. Ford, P. Holdridge, J. Carter, and C. Upton. Cogni-

tive styles and computer-based creativity support systems: Two linked

studies of electro-acoustic music composers. In Computer Music Mod-

eling and Retrieval. Sense of Sounds, volume 4969 of Lecture Notes in

Computer Science, pages 74–97. Springer Berlin Heidelberg, 2008.

BIBLIOGRAPHY 97

[15] Evans. Domain-Driven Design: Tackling Complexity In the Heart of

Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2003.

[16] S. Fels and M. Lyons. Interaction and music technology. In P. Campos,

N. Graham, J. Jorge, N. Nunes, P. Palanque, and M. Winckler, edi-

tors, Human-Computer Interaction – INTERACT 2011, volume 6949

of Lecture Notes in Computer Science, pages 691–692. Springer Berlin

Heidelberg, 2011.

[17] S. Fichtner. Direct manipulation. Seminar: Theories and Models in HCI,

http://hailbringer.com/writings/dm_seminar_paper.pdf, 2013.

[18] S. Fichtner. Hail: Developing the human-audio interaction lab.

Master-Project, http://hailbringer.com/writings/developing_

the_human_audio_interaction_lab.pdf, 2014.

[19] S. Fichtner. What music composition interfaces require. Master-

Seminar, http://hailbringer.com/writings/what_music_

composition_interfaces_require.pdf, 2014.

[20] M. Gurevich. Editor’s notes. Computer Music Journal, 34(4):4–5,

2014/02/18 2010.

[21] T. T. Hewett, M. Czerwinski, M. Terry, J. Nunamaker, L. Candy,

B. Kules, and E. Sylvan. Creativity support tool evaluation methods

and metrics. In B. Shneiderman, G. Fischer, M. Czerwinski, B. Myers,

and M. Resnick, editors, NSF Workshop Report on Creativity Support

Tools, pages 10 – 24. National Science Foundation, Washington, DC,

2005.

[22] S. Holland, K. Wilkie, P. Mulholland, and A. Seago. Music interaction:

Understanding music and human-computer interaction. In Music and

Human-Computer Interaction, Springer Series on Cultural Computing,

pages 1–28. Springer London, 2013.

http://hailbringer.com/writings/dm_seminar_paper.pdf
http://hailbringer.com/writings/developing_the_human_audio_interaction_lab.pdf
http://hailbringer.com/writings/developing_the_human_audio_interaction_lab.pdf
http://hailbringer.com/writings/what_music_composition_interfaces_require.pdf
http://hailbringer.com/writings/what_music_composition_interfaces_require.pdf

98 BIBLIOGRAPHY

[23] Y. Hong and T.-J. Nam. A method to get rich feedbacks from users in an

interview for design concept decision. In CHI ’10 Extended Abstracts on

Human Factors in Computing Systems, CHI EA ’10, pages 3907–3912,

New York, NY, USA, 2010. ACM.

[24] A. Jandausch. Conceptual metaphor theory and the conceptualization

of music. In International Conference of Students of Systematic Musi-

cology, volume 5, 2012.

[25] M. Johnson and S. Larson. Architectural Metaphors in Music Discourse

and Music Analysis, volume 50 of Yearbook of Comparative and Gen-

eral Literature: Mutability. Architecture, Music and the Chicago School,

pages 141 – 154. Bloomington: University of Indiana Press, 2002.

[26] A. Johnston. Beyond evaluation: Linking practice and theory in new

musical interface design. In Proceedings of the International Conference

on New Interfaces for Musical Expression, pages 280–283, 2011.

[27] J. Kjeldskov and M. B. Skov. Was it worth the hassle?: Ten years of mo-

bile hci research discussions on lab and field evaluations. In Proceedings

of the 16th International Conference on Human-computer Interaction

with Mobile Devices & Services, MobileHCI ’14, pages 43–52, New

York, NY, USA, 2014. ACM.

[28] P. Mannonen, M. Aikala, H. Koskinen, and P. Savioja. Uncovering the

user experience with critical experience interviews. In Proceedings of the

26th Australian Computer-Human Interaction Conference on Designing

Futures: The Future of Design, OzCHI ’14, pages 452–455, New York,

NY, USA, 2014. ACM.

[29] C. Nash. Supporting Virtuosity and Flow in Computer Music. PhD

thesis, University of Cambridge, 2011.

[30] C. Nash and A. Blackwell. Tracking virtuosity and flow in computer mu-

sic. In International Computer Music Conference, pages 575–582, Ann

BIBLIOGRAPHY 99

Arbor, MI, 2011. International Computer Music Association, MPublish-

ing, University of Michigan Library.

[31] C. Nash and A. Blackwell. Liveness and flow in notation use. In Pro-

ceedings of the International Conference on New Interfaces for Musical

Expression, Ann Arbor, MI, 2012. University of Michigan.

[32] J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1993.

[33] J. Nielsen. Usability inspection methods. In Conference Companion on

Human Factors in Computing Systems, CHI ’95, pages 377–378, New

York, NY, USA, 1995. ACM.

[34] J. Nielsen. Why you only need to test with 5 users.

Nielsen Norman Group, http://www.nngroup.com/articles/

why-you-only-need-to-test-with-5-users/, 2000.

[35] J. Nielsen, T. Clemmensen, and C. Yssing. Getting access to what

goes on in people’s heads?: Reflections on the think-aloud technique.

In Proceedings of the Second Nordic Conference on Human-computer

Interaction, NordiCHI ’02, pages 101–110, New York, NY, USA, 2002.

ACM.

[36] D. A. Norman. Interaction design is still an art form.: Ergonomics is

real engineering. interactions, 13(1):45–60, Jan. 2006.

[37] J. Preece, Y. Rogers, and H. Sharp. Interaction Design. John Wiley &

Sons, Inc., New York, NY, USA, 1st edition, 2002.

[38] E. Raita. User interviews revisited: Identifying user positions and

system interpretations. In Proceedings of the 7th Nordic Confer-

ence on Human-Computer Interaction: Making Sense Through Design,

NordiCHI ’12, pages 675–682, New York, NY, USA, 2012. ACM.

http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

100 BIBLIOGRAPHY

[39] K. Wilkie, S. Holland, and P. Mulholland. What can the language of

musicians tell us about music interaction design? Computer Music

Journal, 34(4):34–48, 2010.

[40] S. Wiltschnig, B. Onarheim, B. T. Christensen, P. Dalsgaard, H. Kors-

gaard, L. J. Ball, J. Chan, A. Houssian, and A.-M. Hebert. Integrating

laboratory paradigms and ethnographic field studies for advancing anal-

yses of creative processes. In Procedings of the Second Conference on

Creativity and Innovation in Design, DESIRE ’11, pages 365–366, New

York, NY, USA, 2011. ACM.

[41] T. Zhao and S. McDonald. Keep talking: An analysis of participant

utterances gathered using two concurrent think-aloud methods. In Pro-

ceedings of the 6th Nordic Conference on Human-Computer Interaction:

Extending Boundaries, NordiCHI ’10, pages 581–590, New York, NY,

USA, 2010. ACM.

Appendix

The data that we list here in the appendix to represent the assessment ses-

sions is only a selection of observations that we made while re-listening to

our audio recordings.

The quotes and comments are partly un-edited, meaning they represent

our notes and are not part of the polished main body of this work. What we

already used in the main text doesn’t appear in this appendix.

Participant Profiles

Participant A

Age 27

Sex Female

Profession Interaction Designer

Instruments 1. Electric guitar for 11 years

2. Singing in a choir for 4 years

3. Keyboard for 3 years

4. Songwriting (incl. singing) for 2 years

Activities and

Experience

1. Songwriting and recording as a hobby

2. A bit of live experience

101

102 APPENDIX

Software and

platforms

1. Logic X Pro on Mac OS to record, edit, compose

and mix songs

2. GarageBand on Mac OS to record, edit, compose

and mix songs

3. MuseScore on Mac OS to compose and print scores

4. Voice Memos on iPhone to capture raw ideas

Type of music singer-songwriter, pop songs, natural sounds, mainly

recordings, some virtual instruments

Process

Overview

1. Create lyrics and melody, possibly with guitar,

possibly capture in Voice Memos

2. Add chords using guitar

3. Flesh out song structure on guitar, finalise on paper

or in a word processor, possibly use MuseScore

4. Possibly transcribe score in MuseScore for further

composition and printing scores for other musicians

5. Record song in GarageBand or Logic

6. Edit and mix in GarageBand or Logic

Participant B

Age 47

Sex Male

Profession Musician (composer, performer, teacher)

Instruments 1. Trombone for 37 years

2. Piano for 40 years

3. (Base) guitars and other instruments on demand

APPENDIX 103

Activities and

Experience

This is a selection:

1. Leading, playing, composing and background

singing in a jazz and latin band for 13 years

2. Playing in a Big Band for 10 years

3. Leading a trombone choir for 8 years

4. Playing in a Latin and Salsa Band for 6 years

5. Playing in another band for 6 years

6. Leading a Big Band for 4 years

7. Leading and playing in another latin jazz band

8. Composing and arranging scores for his bands

9. Recording two albums with one band

10. Coaching young bands

11. Teaching instruments

12. Composing scores for a score publisher

Software and

platforms

1. On Windows: Finale for score writing, editing, ar-

ranging and print

2. On Windows: Sonar for inspiration, recording,

composing, arranging

3. On the iPad Mini: different Apps for capturing

ideas and composing

Type of music Jazz & Latin, Songwriter Rock/Pop

Process

Overview

1. Start new ideas withs instruments: Guitar, piano

... or with lyrics

?. Possibly write idea down on paper (text and har-

monies) 2. Write note for note through a combination

of MIDI-piano and keyboard into Finale (actual com-

posing and arranging)

3. Export Finale files as MIDI files and import MIDI

files into Sonar

4. When the large scale structure (arrangement) is

fleshed out, record guitar, base, vocals into Sonar

104 APPENDIX

Participant C

Age 25

Sex Male

Profession 1. Multidisciplinary artist

2. University student of Communication Design

Instruments 1. Acoustic and electric guitar for 19 years

2. Base guitar for 7 years

Activities and

Experience

1. Song writing and recording for 8 years

2. Home recording solo artist, but compositions aim

at a band instrumentation

3. Experience with playing and improvising in a band

4. A bit of experience with collaborative song writing

Software and

platforms

1. Logic Pro on a Macbook at home for recording

instruments

2. GarageBand on the Macbook for capturing ideas

on the go (without external hardware audio interface)

3. Smart phone for practicing singing

4. Years ago: Cubase on a Windows computer

Type of music Psychedelic rock (instrumental, no singing vocals)

APPENDIX 105

Process

Overview

1. Create and develop new ideas through playing gui-

tar

2. Quite early in the process: record ideas, part by

part, in Logic Pro or Garageband. Some recorded

pieces are very short samples.

3. Build loops from recorded pieces by manually copy-

ing them

4. Playing and recording alternate and inspire each

other, developing the song and its overall structure

iteratively.

5. Virtual instruments are added, but the guitars re-

main the heart of most songs.

6. Utilizes no other externalization (like hand writ-

ing) than Logic Pro and Garageband to capture and

develop ideas

Participant D

Age 24

Sex Male

Profession Designer and film maker

Instruments 1. Violin for 11 years

2. Electric and acoustic guitars for 8 years

3. Piano for several years

4. Cello for a few years

5. Singing for at least a few years

Activities and

Experience

1. Playing violin in a jazz band

2. Playing guitar in a metal core band

3. Working for a music label

106 APPENDIX

Software and

platforms

1. Logic Pro on a Macbook

2. GarageBand on the Macbook

3. PhotoBooth on the Macbook (to record videos of

playing ideas on the guitar)

4. Currently learning to use Ableton Live (on the

Macbook)

Type of music Singer-Songwriter (solo) with recorded and virtual in-

struments, artful movie scores

Process

Overview

1. Creates and develops ideas through guitar- or pi-

ano playing

2. Constantly records with Logic Pro. Recording and

composing alternate quickly and co-evolve (iterative

approach, rapid cycles).

3. Sketches out ideas with virtual instruments in

Logic Pro, before recording the real instrument

Participant E

Age 16

Sex Male

Profession Musician (jazz pianist, composer)

Instruments 1. Piano and Keyboard for 12 years

2. Violin vor more than 6 years

3. Trumpet for 6 years

4. Base guitar for 4 months

APPENDIX 107

Activities and

Experiences

1. Regularly plays live with several bands

2. Is band leader in at least one of those bands

3. Composes material for his main band

4. Has always been composing music and always used

software to assist that

5. Composed an orchestral soundtrack for a short film

6. Composed a piece for a bigband that also has been

performed live

Software and

platforms

1. Ableton Live on a Macbook

2. Finale on the Macbook for score writing

3. MainStage on the Macbook for live performance

4. Native Instruments Maschine

5. Reaper (back in the early days)

Type of music Jazz and neo soul (live), modern classical (scores), ex-

perimental and electronic (personal projects in Able-

ton Live)

Process 1. Process depends heavily on context and goal

2. Typically creates and develops compositions by

piano playing

3. In some cases, he writes scores, note by note, in

Finale

3. Creates and develops electronic and experimental

pieces completely in Ableton Live and through a MIDI

keyboard.

4. Also develops songs collaboratively with members

of his band

108 APPENDIX

General Processes

Collecting, Accessing and Reusing Material

Participant B

• there was already enough material for the album when the band came

together: ”I’ve had lots of ideas, the ideas emerge at the computer, still

today, and they add up, you know?”

• ”But then there are also songs where you have snippets and you tinker

with them, over a year, and still it doesn’t please you, and then it just

lies there.”

• On managing and saving ideas: ”A long time ago, I also worked without

a computer, but then it was really hard. So I often sat at the piano

and wrote down the chords. And when I was interrupted [...] the idea

was gone the next day. [...] Now with the computer, it’s great. You

can capture [remember] all ideas you come up with.”

• Our question ”Do you know from the project names you have assigned

what ideas they contain?” His answer: ”Always. Yes.”

• On reliability: ”There is a new [version of] Sonar that I would like to

buy, or I could update it, but I still have Windows XP there. And

everything is running just fine. And I don’t dare to install the new

Windows 7 or 8 now, because I don’t know what won’t work anymore.”

• compatibility, self-sufficiency: About 500 score files created over 20

years would have to be re-edited when opened in the newest version of

Finale!

• On reuse of existing material: Our question: ”Does it sometimes occur

that you open one project file and then think Oh there was this other

idea [project file] that would well fit together with this one?” His answer:

”That I mix them together? I think that hasn’t happened yet. [...]

APPENDIX 109

That probably happens before [using Sonar], during composing itself

[with guitar].”

• ideas have such a unique and clear character that they don’t mix to-

gether, so they’re not reused with one another, although working on

one can take months. All its elements remain in one project file. Com-

bining across different keys doesn’t occur because the key is part of

what delineates the character of the song.

• Uses commercial prebuilt content in form of MIDI loops.

• On distribution of prebuilt content: ”That is coming more and more, I

also worked with musicians who create samples and then sell them to

labels. Now, there are many musicians who work like this.”

Participant C

• He rarely re-uses older existing ideas as building blocks for new projects.

If he re-uses an old idea, he doesn’t combine the projects but re-records

the old idea into the new project.

• Uses muted tracks to dump material for later use within the same

project.

• ”The cubase projects are gone, because they were on the old computer.

[...] I don’t mind, it’s old stuff anyhow, so...”

• On accessing project files from the operating system: ”However, I al-

ways give them totally shitty names, so that I don’t know at all what

is actually what. [...] But I also wouldn’t know how to name them

better.”

• He uses additional sample libraries and instruments (beyond what comes

with Logic Pro) but: ”I always have problems with disk space on my

computer.” Our question: ”Like you’re using one violin, but need to

110 APPENDIX

have the whole orchestra package installed that requires several giga-

bytes ...” His answer: ”Yes, exactly.”

• On identifying old unfinished projects when going back to them: ”Now

and then, I listen to them, well, not to all of them but I just look

what the last ten things were that I created. [...] it doesn’t happen

that frequently that I resort to that [old] stuff. [...] I’m just not so

disciplined and constantly simply start new things that just come right

now. And the things that are very important I keep in my head, after

all.”

Participant D

• uses the project file in Logic Pro to dump or park material: ”I use the

first five tracks or so for snippets and ideas ...”

• further on the experimental mode of Ableton live: ”Well, it just is this

preparation for the linear mode, for collecting ideas. It’s just some pot,

like a box of legos.”

• On whether he uses Ableton’s non-linear mode to collect unrelated

ideas or whether he creates a new project file for each new idea: ”I

open a new project because I can, from the mood alone, roughly assign

[identify, separate] it.”

• On re-using parts across these ideas or project files: ”No, I rarely do

that. Somehow it seems to be relatively fixed what belongs where.”

• On whether he recognizes an idea/mood/vision from the name he has

assigned to the project file: ”If it was a serious project, yes. And if

not, it’s just like this [example project on screen], then there are just

these snippets [...] which is somehow also quite awesome. [...] About

music making I find the aspect of development [progress, change] quite

intriguing.”

APPENDIX 111

• ”Actually, it’s also great to be able to let things [snippets/ideas] lie

there [not work on them for longer].”

• regularly (at every significant break), he saves the project file under

a new name (versions number) to keep (conserve) that state for later

comparison or for going back to some earlier state.

• While none of the participants use to merge projects or ideas, Partic-

ipant D does sometimes actually split a project when the ideas stored

within the project file start to diverge. Like other participants, he sees

project files as little material libraries...

On whether he deliberately puts tracks into some order: ”When I’m

[still] trying things out, I indeed sort them according to what [other

tracks] they relate to. [...] And slowly, I develop those little clusters.

But mostly, when I notice these just belong together, I open a new

project [to extract the cluster and have it as its own project] [...] or the

rest is just left there. [...] It’s mostly really like a pot where I throw

stuff in and then, progressively, select things from it.”

Participant E

• On whether Ableton Live project files can be exchanged between musi-

cians: ”I tried it once and it didn’t work. It was just a very simple file.

That is not done that well with Ableton, I think, no that is not that

easy. With the plugins anyway, but with samples it’s also an issue [of]

where they are stored. What also has happened to me is that I emp-

tied my trash and then several projects didn’t work anymore because

some samples were still stored there. [...] I had thrown some sample

away and it probably was still in... yeah, I probably have hundred open

projects on which I don’t work. I rarely finish things.”

• On navigating and accessing his material in the Mac OS Finder: ”Ac-

tually, I don’t use that at all. I do all of that out of Ableton [the

navigator inside Ableton Live].”

112 APPENDIX

• he can not identify (recall) the content of project files from the file

names he has assigned: ”No it is completely chaotic. [...] However,

a lot of people do it like that. You’re just too lazy to think of an

appropriate name and type in some arbitrary shit.” But he recognizes

every piece once he opens the file.

• On whether he comes back to older projects: ”Yes, sometimes. Some-

times, for example, I look into old things, completely old things, just

for fun, and possibly find something of value. But most of the time it’s

actually like half complete, well, on to the next!”

• he rarely brings older existing ideas into new ideas/projects.

• On whether Ableton allows to preview or pre-listen to project files from

within its own file navigator: ”No, you also can’t pre-listen. But that

would indeed be cool, yes.”

Inspiration and Handling New Ideas

Participant B

• On originality: ”Sometimes I wake up at night and go downstairs [into

the basement studio] and make sure that I get it done. I’ll show you

one song were I got up at 02:00 at night and worked non-stop until

11:00, and then the song was done. It was in my head and had to get

out.”

• On handling new ideas ”And then, you have to bring this song or this

underlying thought into a certain shape, and mostly I first do that

with score notation software. There, you can better think about how

the parts lead towards following parts and so on.”

• On why he merges all audio on a track into one file: ”I think that’s not

bad to avoid clicks [glitches] [...] My computer is neither the fastest nor

APPENDIX 113

the newest and sometimes things happen. Like, during recording sud-

denly everything slows down [...] because the CPU is overburdened.”

• uses prebuilt content like loops and samples to get inspiration and new

ideas

• on having new ideas: ”That really only emerges in my head, not at at

the computer. The computer is more for bringing it into a form. But

then [when starting to capture it in software] it’s already complete in

my head. A lot also emerges on a sheet of paper, when I sit to write it

down, I write the chords.”

Participant C

• On why he writes nothing down on paper: ”What I play on the guitar

I can remember pretty well.”

• Determines song tempo in the beginning by recording one of the initial

guitar licks and then matching the tempo to it.

Participant D

• On sketching new ideas with virtual instruments: ”That is the useful

thing about it. Before I record anything with the violin... I mean it

sounds shitty first [the virtual instrument] but you can plug in a violin

sound and see how it generally fits there.”

• uses Photo Booth on his Macbook to record videos of himself playing

new ideas on the guitar, partly to also capture fingering (the left hand)

• particularly with movie scores, he starts the composition process with

an atmosphere or mood in mind

114 APPENDIX

Work Process

Participant A

• about the prospect of composing in Logic: ”That would also distract

me too much, I have to say. I’m someone who is quickly overstrained

by screens. My brain can’t process that [composing] as well and I’m

not very creative anymore when I sit in front of it [the screen]”.

• further on software complexity: ”MuseScore is extremely complicated

to handle, I think. Not particularly intuitive.”

• struggles to clearly identify, compare and combine parts: ”It would be

easier if it were clear. With my new one [song], I came up with the

chorus, and I needed a long time to write the verses for that, and wasn’t

completely happy with that. [...] Either I complete it, or it lies around

somewhere as an idea.”

Participant B

• On the goal of composing and drawing the finish line: ”It has to commu-

nicate something. It has to become [overall] a coherent entity. Whether

it sounds perfect [...] [is not important] at some point you are ready to

say now it’s done.”

• On using synthetic instruments: ”I do a lot at the computer. And

back then, when I wasn’t as proficient with instruments, I tried a lot

with virtual instruments and to optimize their sound so that it would

express some human feeling. [...] On the second album, the percussion

is completely made of samples. [...] I did that all here at the keyboard.

[...] This is where the software – with what you work – really makes a

difference. I had the best experiences with Sonar.”

• On using a click for recording (and timing) a song: ”Good musicians

practice – and are able to play – with a click. This is very very impor-

tant.”

APPENDIX 115

• On recording with a click vs. the creative dynamic of recording songs

by performing them as a live band: ”Nowadays, with a computer, you

can do that alone, you can perfectly flesh out the idea that you have

and then hand it over to the musicians. [...] That [the click] is never

a limitation, it just requires you to be more explicit about what you

want to do. It results in greater certainty.”

• Our question: ”What would you say is more important in a band that

works together, the musicality or the training?” His answer: ”The

musicality. [...] Score notation is always only a means to an end.”

• Solo composition precedes collaborative recording/performance: ”Now,

I have composed five new songs that have vocals, and I want to bring

them onto a CD in the near future but, firstly, I don’t yet have the

right musicians for that and, secondly, I have to improve the songs

some more.”

• On working with MIDI loops in Sonar: ”The wonderful thing is you

don’t have to quantize it. It’s all ready to use. You drop it in there

and it automatically plays through [the drawn time range].”

• It’s better to start a new project than endlessly perfecting an existing

one

• Used virtual instruments on album production

• the click is does not a restrict creativity, mostly because tempo changes

can be programmed in the sequencer

• Using software to create and notate music greatly enhances the com-

munication of ideas and musical content between musicians, especially

if those musicians are amateurs and not classically trained.

• turns MIDI tracks int audio tracks by recording them, in order to save

CPU performance.

116 APPENDIX

• would like to temporarily hide or trim down graphical representation

in favor of CPU power for real time recording.

• uses project files to communicate ideas with his collaborators

• He doesn’t create sounds or instruments. Those are always just applied

in the context of a concrete composition. ”I’m not a sound tinkerer.

[...] I don’t want to produce but bring the composition onto a stage [to

real musicians].”

• Doesn’t create mix groups as that is more on the production side.

• ”There is often very very much specific information, also here [in Sonar]

that you can click on [and] that you, now in this moment, don’t need

at all, you know. And that is much too much information that rather

distracts you from what you’re actually doing, and where it takes a lot

of time to click in there [interact].”

• ”What has helped me is that here [...] I assign these little instruments

[instrument pictures to tracks]. Then you immediately see There is a

guitar, there is a drum set [...]”

• Criticizes the separation of mixer and tracks into different windows in

Sonar.

• creates loops (like with the drums) through manual copying (!)

Participant C

• On why Garageband is sufficient in most cases: ”It’s [the song is] always

more or less like a sketch, and I don’t have the ambition to get a fully

produced song out of it. [...] because I also don’t know much about

mixing and things like that.”

• His songwriting involves more than chords and is not strictly chord-

based. It is more guitar-oriented and also roots more in licks than in

riffs.

APPENDIX 117

• On developing songs to completion from within the sequencer: ”Unfor-

tunately, it’s very often the case that I don’t finish these things [songs],

but I just start and tinker with that piece and think Well, at some time,

when I have use for it, I’ll come back to it. But it’s nothing complete.”

• has problems with panning/zooming in Logic Pro because he works a

lot with Video software where that works differently...

• on editing notes (events) for virtual instruments: ”Most of the time I

do, indeed, click [create/draw] them there, note by note.”

• Manually moves events around and away from the quantization raster

to introduce some kind of randomness, i.e. natural timing.

• uses the macbook keyboard to record only a rhythm on a single key,

then edits the tonal aspect (key) of each recorded note manually.

• records rhythms and single chords through a MIDI keyboard

• manually creates and edits complex drum patterns and fills in the pi-

anoroll editor, without actual drum playing experience

• The structures in temporal and voice-dimensions develop in interde-

pendence, inspiring each other iteratively. As the song grows longer

and its temporal structure delineates, the number of tracks grows with

it. The example song was about 5.5 minutes long and had about 30

tracks, most of them audio tracks.

• On collaborative writing: ”In my experience, when I perform with

other people, totally different ideas come up than when I perform only

by myself. When I record stuff by myself I’m always quite restricted, I

don’t know why, but when I write some chord progression and record it

and record overdubs on that, the result is rarely as good as when I play

to material of others. I think one reason is that, as soon as I record

something solo, there is this thought in my head this is being recorded

and it has to fit, and then I’m not as free to just play around.”

118 APPENDIX

• He uses only a very minimal set of features of the software, to the

point of not being aware of very basic features and having workflows

that are unnecessarily cumbersome. But, on the other hand, he stays

deeply connected to his inspiration, creative intention and creative re-

sult. (admirable)

• He does not change the order of tracks. Their order is determined

by when and where he creates them. This doesn’t seem to inhibit

”juxtaposability” for him, or he doesn’t require it very much (editing

musically related tracks side by side, in relation to each other).

• On not naming tracks or regions: ”In my process it’s always like that:

When I’m really at it, that all has to go very fast. I don’t know it any

other way. As long as the flow is there, it has to go fast, and then I

can’t name that stuff or put it in order.”

Participant D

• Learns and plays by listening. ”I hate score notation, always hated it.”

• On his example song: ”Particularly with guitar, I make music by just

playing. That is, I don’t think about music theory at all because I also

don’t know much about it.”

• On his iterative process: ”Actually, I constantly record and build on

what I just did. Either I work on it or replace something, that is

an enduring process. [...] Even though it doesn’t actually all happen

simultaneously [composing and recording], I jam with myself, so to

speak. What I also frequently do is, like if I only have one riff or so, I

loop it and jam over it and see what comes out of that.”

• ”At some point the decision has to come when to really record it [the

idea/song/instrument].”

• He sketches ideas and melodies with virtual instruments.

APPENDIX 119

• On whether he also uses GarageBand: ”Yes, but that is... well, cur-

rently ... I mean Logic and GarageBand are basically exactly the same

thing. [...] I use GarageBand whenever I don’t have Logic available.”

• ”I’m a big proponent of the attitude that these things are tools. So,

with which software you work, with mac or windows is so irrelevant.

[...] What I like about the Mac is just the interface.”

• ”What I just find great, for example now that I’m learning Ableton

[Live] [...] there is this classic linear [sequencer interface] and then also

a kind of experimental mode, and I really embrace that at the moment.

That is the way I actually make music, that is: playing, then recording

something in between, modifying and looping, and for that Ableton

[Live] is just fucking awesome. [...] Of course, when I ultimately record

music, I need that linear mode, because on a pure logical level it’s just

made for that. It’s just a timeline, exactly like with film. But until I

am at this state [to record in that linear mode] [...] I mean, the tracks

that I have then are so short but I have 20 of them. And Ableton [Live]

simply does exactly that for me, because I’m actually not yet in that

linear mode but in that I’ll just loop everything I have and look how

it might fit together.” Our question: ”So you don’t yet have to decide

on the order.” His answer: ”Exactly, exactly. Because that [order] is

supposed to just evolve out of that [different loops/snippets].” That is

a classic articulation of the requirement for delayed linearization [19].

• On his decision not to go into music professionally but to keep it as

a hobby: ”Because as soon as you have to do it ... no, this little

soundtrack niche for little movies is totally sufficient for me. And I also

really celebrate it that I can make music whenever I’m really inspired

and then I’m also more motivated than if I’d have to do it.”

• uses no mix groups and has, overall, no experience with – or interest

in – the subtleties of mixing and producing.

120 APPENDIX

Participant E

• On MainStage: ”It can’t do that much but it’s just mega reliable, so

that it doesn’t crash or something...”

• ”Actually, I don’t use Logic at all, but by now I also have that.”

• Used an intricate setup for his orchestral movie soundtrack: he routed

MIDI data from Finale into MainStage, i.e. he used MainStage as

a standalone orchestra. Then, by using Soundflower, he directed the

Audio output of MainStage into Ableton Live to record it.

• describes the restrictions and complications that the composer faces

when composing a piece that is supposed to be played by a real ensem-

ble, like a bigband or an orchestra. for example, not every melody can

necessarily be played on a specific instrument.

• On zooming and scrolling in Finale: ”Normally, I go into normal zoom

[level] and then I scroll [with the mouse, Finale does not utilize the

touchpad]. [...] in the beginning, that was totally odd, particularly

when you come from Ableton [Live]. In Ableton, you just click into the

location and press play. An here [in Finale], you really have to specify

the bar number. [...] But you get used to it. Most of all, it [Finale]

makes you work more accurately, while in Ableton, you can just tinker

with it until it fits, but when you write a score [like in Finale] you got

to be a little precise.”

• On the nature of his countless unfinished ideas/projects: ”Often, they’re

really just loops. Mostly, they’re not fleshed out, well, the details are

not done and they’re not mixed at all. Well, by now I can mix a little

but it’s not that fun. [...] while I’m still working [developing the piece],

I already mix more than other people.”

• more on the role of mixing: he doesn’t use specific monitor boxes for

that. this rough mixing is part of developing the character of the piece

APPENDIX 121

and weighting voices relative to each other. It follows a creative not a

technical intent.

• creates and edits much score data (notes, events, MIDI) manually with

the mouse. Then he often moves those notes around to make their

timing less clean and more natural.

• On the timing raster of Ableton Live: ”However, that’s a thing that I

don’t like at all. When you play jazz and things like that, there are not

just triplets but also [german: Quintolen und Septolen] ... You can’t

do that here.”

• when he has ideas on the go, he captures them with his Macbook: ”The

least amount of the time I sit down here [in his basement studio]. I have

it [the Macbook] upstairs and also when I’m on the way [outside, any-

where], I always have it with me, even during rehearsals. If this should

break, a lot of stuff [compositions] would be gone. Really everything is

on that.”

Handling Temporal Structure

Participant A

• Participant A on working out a temporal structure: ”Of course [I do

that]. It [the composition] has to be logical [i.e. meaningful, coherent]

after all.”

Participant B

• On the temporal structure of an example song: ”From A to part J.

This is how many parts occur in that song.”

• On custom markers on the timeline in Sonar: ”That is also important

when you make recordings, because I record the base guitar myself and

122 APPENDIX

[when I have to re-record] then I only need to go there, like I go to the

pre-chorus, you know, and play [record] it again if I didn’t like it.”

• Our question: ”Suppose you would like to edit the structure of the

song, like inserting a verse there, how would you do that [in Sonar]?”

Answer:”Yes, exactly, I often do that. Then I cut it through [audio

material on tracks] and there [on the timeline] I can set markers, like

for one bar.”

• he uses markers to orient himself in the time dimension, manually cuts

all tracks, marks all events and moves them through drag and drop to

edit the large-scale temporal structure

• On why this form of editing is not as cumbersome as it sounds: ”Before

I record all tracks I have, like, only the guitar, drum and base tracks.

That are three tracks, that provides clear overview. And there you can

say Ah let’s insert another verse here”

• identifies verses as ”parts”, also uses other specific terms for temporal

abstractions: chorus, pre-chorus, fill, break, bridge, transition, varia-

tion

• very common: looping the chorus a spontaneous number of repeats

Participant C

• on the structure of his example song: ”There are roughly two different

parts, and they [an organ instrument] only play in the chorus like part.”

• Our question: ”How do you maintain an overview on the structure of

the song, like where which parts are?” His answer: ”Good question...

basically, I just remember what I have recorded. I always have this

part A with which it starts, and then here comes the chorus at some

point, after this gap where the break comes [...] that occurs once at the

beginning, then the part A comes again, and then it goes, well, where

APPENDIX 123

is the transition... [plays the song at that position] ... well, I don’t

really set markers [on the timeline] where I am.”

• On how the temporal structure of the song evolved: ”I really have

to say, that emerged during recording and tinkering with it. I didn’t

somehow create a concept or anything like that [...] I just started

playing around. I create one part, then I create another, then I say

OK, now I want to proceed with the first part.”

• Edits the temporal song structure (arrangement) by manually selecting,

moving, copying audio- and MIDI regions.

• On temporal overview and transient voices: ”When I edit at some

position, I listen to it. And then, when I search anything, like I want

to change a specific bit, I listen to it [the song at an estimated position]

and see Ok, it has to be there [the correct position].”

Participant D

• on how the temporal structure (order of parts) evolves during the pro-

cess: ”It’s not predetermined, particularly with melodies, I create them

still in this jam stadium and record it as kind of a placeholder and look

what comes out of that. and then, out of that, I pick parts that I like

and re-record these specific parts. and then, most of the time, I have

the melody.”

• on (temporal) structural differences between singer-songwriter and sound-

track projects: ”That parts are repeated is more the case with singer-

songwriter stuff, but there I’m not at the computer most of the time

when I’m doing singer-songwriter projects. Of course, they are also

much much simpler, they’re mostly just chord progressions where you

can say: verse, verse, chorus, bridge... and then done. [...] well, that

[temporal structure] then emerges from the working process. Yeah,

124 APPENDIX

maybe that is the main difference. When I make music with the com-

puter, I mostly have visual references. The goal is simply different.

There [when composing soundtracks], I don’t just make music to make

music, but I make music purposefully to underscore or amplify a mood.”

Assessment of our Design

Domain Model and DAGs

Participant B

• Immediately understands the concept of parts (verse and chorus) in-

heriting the loop of their super-part (song): ”Well, I like that, yeah.

I find it provides overview. When you can structure it like that. [...]

That would be great. You see exactly were you are in the song.”

• on having the same sub-part (like a chorus) referenced multiple times

from its super-part (song): ”That would, of course, be much faster to

handle. Because, here [in Sonar], you have to click, copy, move, cut

again and so on.”

• On re-use: ”Yeah, nowadays, there is more this thing, like you have

a song, and now there is the single version and there is the groove

version and disco version. Very many [musicians] do that nowadays.

And it would be great if you could automate [assist] that, of course.

[...] Yeah, exactly, that you can access single parts and say On those

parts, I wanna hear a different beat for once. Or I wanna have that in

a higher key. If you could juggle like that, that wouldn’t be bad.”

Participant C

• ”In itself, it all makes sense, indeed, particularly with different tempos.

If you have one and the same tempo, it’s easy to piece everything

together. But if there are different tempos [in different parts] ... [...] I

APPENDIX 125

don’t know how it would be [in our design], but you can stretch MIDI

instruments and all [freely change tempo], but with audio recordings

you couldn’t necessarily do that [in our design], or could you?”

• On the inherited beats in verse and chorus: ”That’s a bit complicated.”

• On the possibility of removing those keys from an ”instrument” (com-

posed voice) that have no events: ”Of course, to simplify that makes

sense, so that you only see what is really there.”

• ”Of course, it would be cool if I could try it out in more detail, but I

understand the overall concept. And it also makes sense. Like I said,

maybe not for everything.”

Participant D

• On how the DAGs for parts and voices might effect the way of compos-

ing: ”I can imagine this to be pretty good in a collaborative setting.

Because, since you can always go one [abstraction] level higher, the

single part loses its significance. [...] I could imagine this could become

interesting when multiple [composers] participate in it. So that you

have this sound pool, this library, but so that it is set up in a way

that [people] can exchange [material] between each other. [...] At least

in the design industry, everybody has, indeed, his pride and wants to

bring in his own stuff. And here [in our model], it is more democratic

because the higher you go in these [abstraction] levels the less you see

the details, and maybe it’s easier this way to mix and combine [material

from different people].”

• Asks how a part like a verse that is repeated throughout a song can

then be varied a little with every repeat. ”Could you, if you have a

verse, and if it [the defined score/loop] is just one chord [like 4 beats],

could you basically attach variations and alternatives to it? So that,

126 APPENDIX

if you press longer on it you’re offered verses A to D because you just

want that the second verse ends a little differently.”

”It also is very genre-dependent. Because if you want to make a 4/4

electro, it’s super because that is not that complex.”

• he recommends: ”Look into Ableton [Live]. That also works with

building blocks. [...] The approach is similar [to ours]. Of course, it

aims at something different, it is made to work live.”

Participant E

• On the voice graph: ”Well, you should definitely look into Ableton,

I think. Because, it’s not exactly the same but it does contain ideas

like groups. This [our voice graph] is something that is not in there

[in Ableton Live], that everything is so extremely connected. This here

[the part graph] is quite close to what Ableton has as an idea. And

that here [the voice graph] is definitely a great idea, yes.”

• a major confusion unfolded because, in our mockups, the example parts

in the library were named ’project’ and ’song’. He read these names

as categories of the model rather than as custom names assigned by

the user. the names in the example should be changed into something

more authentic.

• On the inheritance that our hierarchical loop definitions offers: ”Yes,

that is indeed great. [...] Yeah, that does make sense.”

• Brings up a sequencer software (name unknown) that supposedly is the

only software that lets the user apply effects not just to voices but to

sections on the timeline (parts) just as well and easily (without time-

dependent programming parameters of the effect or voice). He really

likes that feature. strongly suggests that we treat parts in analogy to

voices when it come to applying effects.

APPENDIX 127

• further suggests that effects and audio processing should be applicable

to a specific combination of part and voice (which we called Perfor-

mance in our model). strongly suggests that this should not be the

current performance, because that would require the user to enter and

leave a sub-part and a sub-voice when he wants to apply an effect to

what we call a cell in the score matrix. The user should rather maintain

overview over all sub-nodes and select and edit a single cell ...

• ”For now, I wouldn’t do that much with effects and so [audio processing]

[...] but first, when you start [to implement HAIL], only [implement]

these samples [as the basis for custom abstractions], because I believe

you can already do a lot with these.”

Graphical Representation

Participant B

• On the content preview displayed on events for the composed drum

voice: ”you could also display that in other formats, for example as a

score. [...] Because that would be interesting [...] If you display base

and snare separately, you’d see exactly what the base plays and what

the snare plays.”

• On timeline and cursor: ”If that would also be marked through colors

... or a little time marker would run there [directly on the part].”

• On the cursor running over a loop repeatedly before it enters the next

part: ”That wouldn’t be necessary at all. It would suffice if the time

cursor would simply run through [the sub-part] down there [directly

on the subpart representation]. And up there [in the event editor] it

would only display what it plays. That would totally be enough for

a musician. I even like that more than if the cursor would constantly

move over that [the loop in the event editor].”

128 APPENDIX

• ”Of course, if you don’t use only one loop there [...] but when you

[...] wanna have a fill after the third bar, that should be possible by

tapping it, it should be able to display that. [...] I’d work a lot with

color there [to signify variation and repetition over time]” he means:

color coding the variation of a loop that the sub-parts apply. ”If the

colors are similar [like applied in sonar] [...] you immediately see That

must be the same.”

• Criticizes that, in Sonar, variations like fills within audio material is

not visualized which confines orientation in the time dimension: ”Here

I only see one thing [actually] made of different loops. If there would

be different colors, then I could immediately recognize Ah, it plays

different things there. And [on every third bar], if I had that darker,

I could recognize [the difference]. And when it’s light again [...], there

it plays the same thing again. It would be clear on first sight and I

wouldn’t need to click there and listen to it first.”

• explicitly states that one editable layer is enough but more feedback

on the content of sub-nodes is needed: ”If you need more layers [edit

details] you tap on it [the sub-nodes], and separate that single part [of

interest].”

Participant E

• He suggests that entering (opening/selecting) a part should be initiated

through a zoom gesture, i.e. by literally zooming into the part. He

really emphasizes that the transitions should be smooth and feel like

zooming in and out of details rather than like opening and closing files.

• on the graphical content preview displayed on events: ”Graphically,

I wouldn’t make this a waveform but really as a clip [rectangle] and

inside the clip [if it triggers a performance] display the clips [preview

the events of that performance]. Then you also see when you are inside

the deepest layer [where the voice refers to samples].”

APPENDIX 129

Timeline and Quantization

Participant B

• On the time line: ”You always need a certain raster to understand that

and [communicate that] with other people.”

Participant D

• On the timeline of the part library: ”So for the lib there’ll also be an

overall timeline?”

Participant E

• likes the idea of being able to partition atomic parts by just assigning

some list of small prime numbers, like (5, 2, 3) which would partition

the part into 5 sub-sections and partition each of these 5 sub-sections

into 2 sub-sections and so on...

Global Events

Participant B

• On editing events for different levels of voice abstractions, from notes

to big loops: ”Yeah that is, indeed, understandable.”

Participant C

• On applying (reusing) arpeggios or some form of composed events: ”I

would do that manually. [...] If’d hat to do that automatically [like

with MIDI effects], until I’d have configured exactly what it should play

automatically, what kind of arpeggio ... [it would take too long]” Our

question: ”Would you make use of it if you could create it manually

but then apply it to the whole track/instrument?” His answer: ”No, I

don’t think so because I always would... well I can’t really know that

now.”

130 APPENDIX

Participant E

• On what events for composed voices should mean: ”From practice I’d

say ... wait, maybe I should reopen Ableton again. [...] There [in

Ableton Live] it is basically the same problem. [explains MIDI regions

and how they are edited in Ableton Live]” From there, a deep discus-

sion unfolded about custom abstractions and what the nature of global

events should naturally be.

• expresses the strong intent to ”go into [global] events” and would like

to understand [as far as we understood him] the events themselves as

references to containers/pieces rather than as references to voices and

voice groups

Recording, Input and Integration with other Software

Participant B

• ”I could very well imagine that as an additional program to that [Sonar]

in the program itself [as a plugin in Sonar] within a big interface, where

you’d open such an editor [HAIL] and you could arrange the single

parts like that [...] and simply insert them again there [reuse/repeat].

I recorded that part already, drums are in there and all, now I want it

to repeat. Or I want to insert another verse in the song, a fourth one

or so.”

Participant D

• ”An optional connection to analog interfaces I’d also find important.

That I have the option to connect my keyboard or my MIDI-controller

or so. That would be great because to do everything with touch be-

comes annoying at some point. Things that tend towards [drawing and

zooming] gestures are cool but, ultimately, this [hardware knobs and

sliders] is indeed more awesome.”

APPENDIX 131

• ”And that’s what I really find great with Ableton [Live] that this map-

ping works super easily [mapping any hardware control onto any control

in the interface].”

Participant E

• Asks whether our proposed system could be an extension [plugin] for

an existing sequencer

• suggests we use Max for Live [an audio programming environment] for

implementing HAIL, based on what he understood of the part library

and because Max for Live integrates well with Ableton Live.

	Introduction
	Seminar
	Project
	About this Work

	Design Concept
	Basics
	Parts
	Voices
	Performances
	Events
	Loops

	Navigation
	Navigating Down
	Navigating Up

	Graph Editor
	Adding
	Ungrouping
	Removing
	Deleting
	Repositioning

	Event Editor
	Panning
	Zooming in
	Zooming in on a Part or Voice
	Zooming out
	Adding an Event
	Deleting an Event

	Evaluation
	Methodology
	User Study
	How the Participants Usually Work
	The Process and how it Relates to Software
	Accessing and Re-using Material
	Input and Instruments
	Handling Temporal Structure
	Using the Software

	From Requirements to Design
	Requirements of Abstraction
	Requirements of Simplicity
	Requirements of Freedom
	Requirements of Exploration
	Summing Up

	From Design to User Experience
	Event Editor
	Graphical Representation
	Understanding the Domain Model
	Parts and Temporal Structure
	Global Events
	Loops and Variation
	Input and Integration with other Software
	Limitations

	Discussion
	On the Validity of our Evaluation
	Creative Applications
	Refining Requirements and Design
	Mobility
	Event Editor
	Graph Editor
	Parts
	Atomic Parts and Quantization
	Parts and Scores
	Musical Length
	Composed Scores
	Global Events
	Loops and Variation

	Lessons for CSTs
	CST Design
	CST Research

	Conclusion
	Summary
	Outlook

	Bibliography
	Appendix

