
HAIL:

Developing the Human-Audio Interaction Lab

Master Project Paper
by

Sebastian Fichtner
Universität
Konstanz

Universität
Konstanz

Universität
Konstanz

Faculty of Computer- and Information Science

Prof. Dr. Harald Reiterer
Dr. Hans-Christian Jetter

Konstanz, 2014

Abstract

This master project is about the interaction design of music composition
software. In the previous master seminar [3], we worked out specific require-
ments. Here, we report from our practical attempts to satisfy those criteria.
This includes the process of domain modeling, sketching and prototype im-
plementation of our Human-Audio Interaction Lab. We propose a relative
simple domain model that allows to solve many crucial requirements at one
stroke.

II

Contents

1 Introduction 1
1.1 Goal . 2
1.2 Terminology . 3
1.3 Platform . 3

2 Development Process 4
2.1 Piano Roll and Arranger . 4
2.2 Integrating Piano Roll und Arranger 8
2.3 Structural Recursion . 9
2.4 Naive Abstraction . 12
2.5 Elegant Abstraction . 16
2.6 The Library . 18
2.7 The Base Case: Audio Data 19
2.8 Elegant Abstraction in Action 20
2.9 Simplification . 23
2.10 Zooming/Panning vs. Editing 25
2.11 Drawing Events . 28

3 Technical Aspects 32
3.1 System Specifics . 32
3.2 Code Structure . 32
3.3 Hacking and Reinventing the Scroll View 38

4 Conclusion 39

References 40

III

1

1 Introduction

In this master project, we designed, implemented and visualized a basic do-
main model of music composition that allows a novel way of interacting with
composed audio. We propose a design approach that makes temporal- and
voice abstractions available to the user as explicit objects. We demonstrate
how a generalization of concepts can lead to a more powerful and, yet, simpler
and more elegant interface.

Figure (1) shows a screenshot of our prototype. This project report will
explain how we arrived at this interface, what it pictures and what can be
done with it.

Figure 1: A performance of two parts and six voices in our prototype

We already detailed our general approach of Domain-Driven Interface De-
sign in [3]. But we want to reiterate that, as this approach is based Domain-
Driven Design [1], it doesn’t differentiate between modeling and implemen-
tation. The real challenge of ”implementing” this project was a conceptual
one. We needed to translate the requirements into a domain model.

In this report, we illustrate how modeling, implementation and interface

2 1 INTRODUCTION

design effect each other and how they evolved through this interdependence.
Because the interface maps the underlying model, we often illustrate the
functional structure of different interfaces through simple interface schemas
as opposed to arbitrary concrete mockups or screenshots. The subsequent
master thesis will involve more subtle variants and screenshots.

1.1 Goal

In the preceding master seminar [3], we compiled a list of 36 requirements
for the interaction design of music composition interfaces. We partitioned
them into 4 broad categories:

1. Simplicity

2. Freedom

3. Exploration

4. Abstraction

The abstraction category turned out to be the largest and most domain
specific one. It is central to music composition interfaces and, therefore,
became the focus of this master project.

Our guiding set of requirements is rather comprehensive. For this project,
we needed to further prioritize, even within the abstraction category.

To tackle the requirements that have the most promising ”Return of In-
vestment” we selected ones that a) address the core of the interaction model,
b) have vast implications for user experience and c) are fundamental for future
solutions to other requirement-problems:

Requirement #21 Voice Groups

Requirement #25 Temporal Abstraction

Requirement #32 Preparation

Requirement #33 Global Reuse

These 4 are at the heart of musical abstraction. Requirements #21 and
#25 demand that the user can build hierarchies of time intervals and voices.
Requirements #32 and #33 then demand an environment that enables the
user to actually work with- and benefit from his custom abstractions.

1.2 Terminology 3

1.2 Terminology

Finally let’s clear up some terminology since all the abstraction also merges
(simplifies) some terms.

A temporal abstraction relates to an interval on the time-axis [3]. In
other contexts we may call it section or part.

A voice is an abstraction on the frequency-axis [3]. In other contexts, we
may call it sound or instrument.

Requirements #21 and #25 abolish the principal difference between atomic-
and composed entities. This is part of the abstraction. Therefore, we use the
term voice for atomic and composed voices. And we use the term part for
atomic and composed parts. Whenever we mean something more specific,
we specify it.

Also we need to specify the visual language that we employ in object and
type diagrams:

A B

A B

A B

A B

A knows (one) B

A knows a collection of Bs

A owns (one) B

A owns a collection of Bs

A B A is a B

A Type A

A Object A

Figure 2: The simple visual language that we used for modeling is not UML

1.3 Platform

The platform decision is a design decision. It must follow from requirements.
We carefully considered the platform categories that are most common

among end users: desktop, tablet and smart phone. The smart phone was
quickly ruled out because, in our context, it has no significant advantage over

4 2 DEVELOPMENT PROCESS

tablets that would make up for its smaller screen. So this became a decision
between desktop and tablet.

In the end, we chose to design for the tablet because it far better matches
the usage contexts as well as user needs and requirements, especially con-
cerning manual input, modalities, mobility, focus and simplicity [3]. In this
report, we’re already beginning to see how those advantages play out. In the
following master thesis, we’ll evaluate it more deeply.

2 Development Process

2.1 Piano Roll and Arranger

At the core of common sequencer interfaces are the perspectives of score
editing and arranging. We’ll briefly explain them adapting the terminology
of such software.

Score editing is the process in which the composer edits the notes of one
instrument, creating musical patterns called regions. The quasi standard
interface for score editing is the piano roll editor, which displays notes in the
2-dimensional space spanned by key- and time-dimension (Figure 3).

Figure 3: The piano roll editor in GarageBand

2.1 Piano Roll and Arranger 5

We care about the functional aspects of this interface as Figure (4) depicts
them.

Key

Time

Note

Note

Note

Note

NoteNote

F

E

D#

D

C#

C

Figure 4: A region is an arrangement of notes in time

Arranging is a similar process on a higher abstraction level. Here, the
composer arranges the regions of several instruments, determining the struc-
ture of the whole song (Figure 5).

Figure (6) displays the corresponding interface schema. Note that a song
can associate several different regions with one instrument. So, regions are
different from notes in that they really contain content and not just refer
to it. One and the same position on the vertical axis of the arranger view
(Figure 6) can actually mean different sounds.

In Figure (4), the two notes on key D produce the same sound because
they refer to an audio sample of an instrument playing that key. In Figure (6),
however, regions 3 and 4 contain different score data and, thus, produce
different sounds.

6 2 DEVELOPMENT PROCESS

Figure 5: The arranger in GarageBand

Voice

Time

Region 1

Region 4

Region 2

Region 3

Region 6Region 5

base

drums

piano

saxophone

synth

vocals

Figure 6: A song is an arrangement of regions in time

Figure (7) shows a sketch of the corresponding domain model. We omitted
the details of how a song associates regions with instruments and how regions
associate their notes with keys.

This is, of course, a simplification. Unfortunately, traditional sequencers
are no that simple.

The model incorporates the notion of an instrument as a sound source
for different keys, meaning that a note is a representation of- and reference

2.1 Piano Roll and Arranger 7

Instrument

Song

Region

Note Key

Figure 7: The traditional domain model might look something like this

to an actual piece of sound data, which could be a WAV file.

If the composer wants to use his own raw sound data, he can create audio
regions that would sit on an audio track similar to an instrument track.
In Figure (6), the ”vocals” track does not well align with the notion of an
instrument. And, indeed, it is more likely an audio track with two different
audio regions.

In order to reflect how the traditional approach relates to actual audio
data, we must add some polymorphism to our reconstruction of its domain
model, like depicted in Figure (8):

Instrument

Song

Region Note Key

Audio File

Instrument
Region

Audio
Region

Figure 8: The traditional domain model might actually look more like this

For simplicity, we assume that each audio region possesses its own audio
data. In reality, traditional sequencers additionally distinguish between orig-
inal regions and region references. This is were these sequencers really mess
things up, and it is impossible for them to satisfy the quite basic require-
ment #35 [3].

8 2 DEVELOPMENT PROCESS

2.2 Integrating Piano Roll und Arranger

We learned how traditional sequencers require the user to distinguish be-
tween notes and regions, between score- and audio regions as well as between
original regions and region references. We can clearly sense how artificial
distinctions lead to an unnecessarily complex domain model which leads to
an unnecessarily complex user interface.

For domain modeling, we rather need to derive global patterns from struc-
tural similarities than to get caught up in subtle differences that make us
produce a soup of clever details.

The basic issue here is that arranger and score editor represent two ar-
bitrary abstraction levels (modalities, scopes, perspectives). Our first step
towards our goal of satisfying requirements #21 and #25 was to examine
whether these two concepts can be integrated into one. Instead of two sep-
arate models for two pre-defined levels we aimed at one model for n user-
defined levels. This would simplify the interface and, at the same time,
empower the user.

There are two basic analogies that we utilized for the integration:

1. Instrument regions contain score data which is an arrangement of notes.
The arrangement of regions within a song is, conceptually, score data
in its own right, traditional sequencers just don’t treat it as such.

The other side of that coin is that notes are practically audio-regions
in their own right since they reference pieces of audio. Of course, tra-
ditional approaches neglect this as well.

2. Arranging and score editing are editing activities in the frequency-
time plane. For the time dimension, this is obvious but what about
instrumentation vs. keys? Both are distinctions within the frequency
dimension as we explained in [3]. There, we also discussed how every
entity of tonal music can be associated with a base key. Aside from
their different scales, regions and notes stem from the same musical
concept.

Regions as well as notes are events in time that reference different sounds.
If we generalize Figures (2) and (6) in that sense, we end up with an instance
of the frequency-time interface like depicted in Figure (9):

2.3 Structural Recursion 9

Frequency

Time

Event

Event

Event

Event

Event Event

Sound 1

Sound 2

Sound 3

Sound 4

Sound 5

Sound 6

Figure 9: The frequency-time editing plane is a design convention that re-
flects some fundamental facts about music composition

The corresponding domain model might look something like this:

Sound

Song

Event

Figure 10: A song associates events with sounds

The one thing that we inherit from conventional sequencers and which
will provide some familiarity to the user is this editing in the frequency-time
plane. This is the starting point of our design process as well as the user’s
learning process.

2.3 Structural Recursion

Our model, as shown in in Figures (9, 10) is simpler but actually not as
powerful as the traditional one that we want to improve on (Figures 6, 8).
The user would now only have one abstraction level to work with where,
before, he had two.

So, how would we recreate regions containing notes using our model? A
sound representing a region would have to contain an arrangement of sounds

10 2 DEVELOPMENT PROCESS

representing notes. There can be any number of recursion levels in an object
graph, as Figure (11) alludes:

Sound

Song

Event

Sound Event

Sound Event

Figure 11: Sounds may contain other sounds.

Because a sound is actually composed of other sounds, we call it a com-
position. Figure (12) shows the resulting class diagram:

Song

Composition

Event

Event

Figure 12: A song associates recursively structured compositions with events.

To be consequent and to satisfy requirements #32 and #33, we acknowl-
edged that the idea of a song is just a convention referring to an arbitrary
special case of composition. Adhering to the results of our previous work [3],
we enabled the user to apply his own understanding of what he is working
at. He would model a ”song” as a composition:

2.3 Structural Recursion 11

Composition

Event

Figure 13: There are only recursively structured compositions.

Now we can deliver both, simplicity and power, from the model through
the interface to the user:

Frequency

Time

Event

Event

Event

Event

Event Event

Composition 1

Composition 2

Composition 3

Composition 4

Composition 5

Composition 6

Figure 14: A composition associates events with its sub-compositions

The structural recursion follows directly from how music works [3] and
from the requirements we identified. In whatever way we may construct,
design and implement it, we need a tree-like model of composed musical
structure. The beauty of such a model is that it not only enables us to
satisfy the four core requirements but also that it helps us to meet most of
the other 32 requirements later on.

The fact that arranging now works like score editing also has the ad-
vantage that all material, an all abstraction levels, can be edited through
metaphors and gestures of drawing. Previously, this was only possible on the
level of notes, i.e. in the piano roll editor. Drawing in the arranger would
only create empty regions which the user then would have to ”fill” with score
data.

12 2 DEVELOPMENT PROCESS

Letting users create content directly through drawing adds great value to
any CST as we previously elaborated [3], and it was another reason for us to
choose tablets as our platform.

For instance, Resnick and his colleagues [4], including Shniderman, de-
manded as one of 12 design principles for CSTs that we ”Design for De-
signers”. We should let users sketch ideas by drawing with their hands to
support their ”creative reflection” and ”reflection-in-action” and we should
enable this even in ”non-diagramic domains, such as writing and movie-
compositions” using ”two-dimensional spatial positioning as a representa-
tion”. How could we ignore this advise regarding the time-frequency plane
of music composition?

2.4 Naive Abstraction

Due to recursion and generalization, the model/interface that we arrived at
was quite powerful and, yet, simple. But it also had its quirks and we call
this first iteration as what it is: naive abstraction.

In this section, we uncover the core challenge that was seeded within the
requirements and that our design process had to overcome. The smallest
example to illustrate this is a piece of music that makes only one distinction
in each of both dimensions.

Consider a song that involves two voices (for instance, vocals and har-
monies) and two parts (for instance, one verse and one chorus). How would
the user model this? Within the song-composition, he could either create
two voice-compositions that would contain part-compositions like in Fig-
ure (15), or he could create two part-compositions that would contain voice-
compositions as in Figure (16).

2.4 Naive Abstraction 13

Voice 1

Song

Part 1 Part 2

Voice 2

Part 1 Part 2

Frequency

Time

Voice 1
Part 1

Part 2

Part 1

Part 2
Voice 2

Figure 15: Naive abstraction utilized for working with voices (instruments)

14 2 DEVELOPMENT PROCESS

Part 1

Song

Voice 1 Voice 2

Part 2

Voice 1 Voice 2

Frequency

Time

Part 1

Voice 1

Voice 2

Voice 1

Voice 2

Part 2

Figure 16: Naive abstraction utilized for working with parts (time intervals)

2.4 Naive Abstraction 15

The figures show the object graphs and their corresponding interface in-
stances. In the illustrations, the nested compositions are pictured in darker
grey, but they wouldn’t necessarily be visible, depending on how the interface
would be designed in detail.

Neither of both structures is true to the nature of the material (domain)
and, therefore, naive abstraction creates problems regarding user experience:

1. The user must decide on one of both structures, although he may not
care about them since they are not an innate quality of the material. In
that sense, the decision is superficial and only complicates interaction.

2. When the composer projects different time intervals onto different com-
positions like in Figure (16), he somehow misuses the composition-axis.
The less repetitive the material is, the fewer events are associated with
each part-composition and their super-composition (the whole) reduces
to mere concatenation.

The composer uses the powerful concept of events to encode the simple
concept of order, and this conceptual overhead translates to a waste of
screen space as Figure (17) demonstrates:

Frequency

Time

E. 1Part 1

Event 2

E. 3

...

Event 5

E. 6

Part 2

Part 3

Part 4

Part 5

Part 6

Figure 17: With naive abstraction, concatenation is a mess

3. The issue of wasted screen space is similar to the one of transient voices
and requirement #20 [3]. The difference is that, for transient voices,
the events always refer to different voices, while the global events in

16 2 DEVELOPMENT PROCESS

Figure (16) actually refer to the same voice, namely the composed
voice that contains voices 1 and 2.

Even when the voice is atomic, the need to arrange different sub-
compositions that refer to the same voice messes with the interaction
concept provided by naive abstraction.

4. Due to redundancy, combining instruments and parts increases the
user’s workload. For example, in Figure (15), the distinction between
the parts is double coded – or lost – depending how you look at it.
Making part 2 shorter, requires to do that one change in two different
places.

5. Parts are ultimately no entities in the model. Even if time is the pri-
mary distinction (Figure 16), the user would need to move two events
just to switch the order of both parts. To move part 1 behind part 2
should be just that: one move.

6. The user cannot set the editing scope to his needs. For instance, in
Figure (15), he cannot choose to arrange (and view) only part 1 across
all voices because the corresponding composition entity simply doesn’t
exist. In Figure (16), on the other hand, he cannot choose to arrange
only voice 1 across the whole song.

In summary, the kind of abstraction that each node in the hierarchy rep-
resents is fixed. After the user made the decision, the node will represent
either a temporal- or a voice abstraction for all future editing. This inflexibil-
ity disrupts workflow and undermines the whole idea of custom abstractions.

2.5 Elegant Abstraction

Through this linear streamlined project report, the next step may seem only
consequential and self-evident, but it actually took a lot of time, contempla-
tion and sketching before a profound shift of our mindset became this major
break through.

The problem we encountered in the previous section bears a lot of resem-
blance to using folders for file organization. Files might be public or private,
work-related or personal, images or texts, important or unimportant and so
on. No folder hierarchy can ever reflect this but we can model it with tags.
Hierarchical tags are actually a generalization of folders as they can imply
other tags just like a folder implies its super-folder.

The composer wants to treat the two basic dimensions of composition
independently. So a composition should have 2 independent tags (qualities),

2.5 Elegant Abstraction 17

one that identifies its voice (instrument) and another one that identifies its
part. Those tags would, of course, be hierarchical and the user would create
these hierarchies as a byproduct of composing. Instead of one hierarchy from
a recursively defined composition-type, we get 2 hierarchies from 2 recursively
defined composition-attributes.

Frequency

Time

Event 3

Voice 1

Voice 2

Event 1

Part 1 Part 2

Event 2

Event 4

Figure 18: Elegant abstractions makes use of both axes

Now that we identify it by two hierarchical attributes, the composition
itself has somehow disappeared. It has become more of a query and less
the object of interest itself. The advantage, of course, is that the composer
can now work with temporal- and voice abstractions independently from one
another selecting any arbitrary combination, and that brings us much closer
to our goal of satisfying requirements #21 and #25. The example problems
of naive abstraction that we described in the previous section are, thereby,
all solved.

At this point, we had a clear picture of how the domain works and how it
approximately manifests in the interface, but formally defining the domain
model in terms of object- and class diagrams did not work so straight forward.
Figure (19) shows a reasonable first iteration of the model:

18 2 DEVELOPMENT PROCESS

Composed Part

Part Voice

Composed VoiceComposition

Event

Figure 19: The structural recursion is now in time- and frequency-dimension

A composition associates a part with a voice. Through polymorphism,
part and voice might be composed of other parts and voices. A composition
also holds events, which make up its actual individual content. An event is
a time interval within the part at which the voice actively plays.

The following sections will refine this model by addressing its implications.

2.6 The Library

Note that any part-voice-combination makes a composition, even though it
might be empty and not hold any events. To store an empty composition
would just mean to bookmark it. Non-empty compositions, on the other
hand, need to permanently exist somewhere. Also, since different composi-
tions may refer to the same parts or voices, compositions don’t own them,
which added the question of where those parts and voices live.

The answer came through the other 2 requirements that we needed to
satisfy: #32 Preparation and #33 Global Reuse [3]. Normally,

”REPOSITORIES and FACTORIES do not themselves come
from the domain” [1].

In our case, however, the library of material is an innate and crucial part
of the composition environment, so our model contains types that would
otherwise be considered repositories:

2.7 The Base Case: Audio Data 19

Composed Part

Part Voice

Composed VoiceComposition

Part Library Voice Library

Event

Composition
Library

Figure 20: All parts, voices and compositions are at the user’s disposal

2.7 The Base Case: Audio Data

We’ll keep ignoring the question what events mean on higher levels, where
they would refer to composed parts or composed voices. Our model involves
recursion and, to make it work, we must first clarify the base case.

The base case corresponds to the leafs in the tree structure of an actual
composition instance and it provides the concrete audio data from which all
the abstractions (inner nodes) are composed.

So where does the audio come in? In the old way of thinking, composed
voices would ”forward” events to sub-voices, and atomic voices would, finally,
deliver the audio data.

This doesn’t apply anymore. Now, the sound or sub-composition that
one event indicates depends not only on the voice that the event refers to,
but also on the part. While the user can create events by freely drawing in
the frequency-time plane, the meaning of an event depends on both of its
coordinates. In Figure (18), for instance, events 3 and 4 represent different
sub-compositions.

Only those compositions whose part and voice are both atomic cannot
delegate their behavior to sub-compositions. Such ”atomic compositions”
must link to audio data. To make this association explicit, we made atomic
parts and atomic voices explicit types.

Of course, different atomic compositions may employ the same audio data.
The repository (library) that holds all audio data performs that mapping:
AtomicPart× AtomicV oice→ AudioData

20 2 DEVELOPMENT PROCESS

Composed Part

Part Voice

Composed VoiceComposition

Part Library Voice Library Atomic VoiceAtomic Part

Audio Data
Library

Audio Data

Event

Composition
Library

Figure 21: The audio library maps atomic compositions to audio data.

There are many more questions to answer and details to work out, most
importantly concerning global events, tonality, editing, reusable scores, nav-
igation and overall workflow. Although we did work on these subjects, cov-
ering them in detail turned out to lie beyond the scope of this project.

However, the basic functional aspects are all there. The model we derived
allows an application to satisfy the 4 core requirements and more. Interface
design alone, without such modeling, could not do this.

This is the perfect moment to return to the user interface. In the following
section, we’ll develop the interface schema of Figure (18) further to kickstart
the evaluation-part of our process.

2.8 Elegant Abstraction in Action

In our example, the user’s collection of material is structured as depicted in
Figures (22) and (23):

2.8 Elegant Abstraction in Action 21

Composed
Part 1

Atomic
Part 2

Composed
Part 3

Atomic
Part 3

Atomic
Part 4

Composed
Part 2

Atomic
Part 1

Figure 22: Example structure in the time-dimension

Composed
Voice 2

Composed
Voice 3

Atomic
Voice 2

Atomic
Voice 3

Atomic
Voice 4

Composed
Voice 1

Atomic
Voice 1

Figure 23: Example structure in the frequency-dimension

The object graphs illustrate two important qualities of the model that
hold true for the ”trees” in both dimensions.

First, a node can have multiple parent nodes. This means the composer
can (re-)use material in multiple contexts.

And second, there can be multiple independent roots. This means the
composer can store and access unrelated ideas or projects. ”Unrelated”
means the nodes might share child nodes (content) but have no mutual an-
cestor node that would relate them to each other.

One instrumentation or band playing multiple songs would translate to
one root voice and multiple root parts. Multiple instrumentations (remixes,
versions) of one song would translate to multiple root voices and one root
part. In our example, we have two root voices and two root parts.

Of course, each node specifies an order of its children. For parts, this is
obvious since they are temporal abstractions, and temporal order is essential
to musical structure. Two parts might employ exactly the same sub-parts
but put them in different orders.

Sub-voices also need to be ordered, not only for consistency and simplic-
ity of the application, but also for other reasons like interface adjustability,
creating composed voices, consistency with traditional sequencers and jux-

22 2 DEVELOPMENT PROCESS

taposability (requirement #23 [3]).
What the interface represents depends on what composition (part-voice

combination) the user has selected for editing. Figure (24) shows an interface
schema for editing the composition made of composed part 1 (CP1) and
composed voice 1 (CV1):

Frequency

Time

EventComposed
Voice 3

Atomic
Voice 1

Atomic Part 2 Composed Part 3

Event

Event

Figure 24: Interface schema for the selection of CV1 and CP1

There is no event for AV1 and AP2, meaning that, in the currently se-
lected composition, AV1 is silent during AP2. The sub-composition that is
made of AV1 and AP2 can still contain its own events, but those are not
audible here.

The composition relates each event to exactly one sub-voice and exactly
one sub-part. The events cannot specify ranges within those sub-entities,
the corresponding sub-compositions have to define those details. Neither do
events stretch over multiple sub-voices or sub-parts, super-compositions may
define such mappings.

This natural quantization promotes high-level editing just as we intend
and allows the user to create/delete ”composed events” by simply tapping
or swiping into such an event cell or quantization cell.

But we also need an exception to this form of quantization. Suppose that,
in Figure (24), the user wants to edit the details of AP2. If he selects AP2,
he may end up in an interface corresponding to the schema in Figure (25):

2.9 Simplification 23

Frequency

Time

Atomic
Voice 1

Composed
Voice 3

Event Event E.

Atomic Part 2

Event Event

Figure 25: Interface schema for the selection of CV1 and AP2

Now, the currently selected part ist atomic. There are no sub-parts that
could be activated or muted for the different sub-voices. Instead, there can
be several atomic events within the part.

Atomic events directly trigger or represent all the pieces of audio data
that are associated with the atomic part and the voice. They do not just
mute or activate time intervals like composed events do. Instead, the audio
data starts to play from its beginning exactly where the atomic event starts.
While the events for AV1 trigger only one piece of audio, the events for CV3
trigger two pieces, one for AV2 and one for AV3.

How editing atomic events is quantized should depend on the zoom level.
The minimal visible size of one quantization cell should be big enough for
touch interaction. We don’t want the user to accidentally introduce micro
timing details when editing from a macro perspective. Instead, he can zoom
in to comfortably edit on a small scale. The currently applied quantization
raster should be visible. In the figures, quantization cells are demarcated by
dashed lines.

Of course, the user should be able to freely drag voices and parts around
to change their orders. For selection, the interface may provide part- and
voice library in additional views that act like file folder trees.

2.9 Simplification

Further insights from implementation and experiments with the interface as
well as time constraints led us to adjust and simplify the presented con-

24 2 DEVELOPMENT PROCESS

cept. Figure (26) shows a subset of the current implementation as a class
dependence diagram:

Voice

Score
Library

Part
Library

Voice
Library

Music Library

Event

Part Score

Performance

Domain Logic

Audio Source Protocol

Audio
Library

Audio
Data

Audio Player
Protocol

Figure 26: Classes of the domain model and of general audio

These are the basic adjustments we made:

1. We dropped any notion of global (composed) events. This can be added
later.

2. We dropped the class-distinction between the atomic and composed
variants. Parts and voices are still either atomic or composed, but only
as an implicit quality. This is especially necessary when atomic entities
are split by the user and, thereby, become composed of sub-entities.

3. We dropped the notion of a composition altogether because it is im-
plicit in the model. Instead, the performance is the current part-voice
combination, picked by the user from the music library.

4. The audio data library does not know such higher-level concepts as
voice and part.

5. All four specific libraries are part of the general music library.

6. The music library maps atomic part-voice combinations to scores. Dif-
ferent combinations may refer to the same score.

2.10 Zooming/Panning vs. Editing 25

Some entities/classes in the diagram deserve further explanation:

1. A piece of audio data is an audio source.

2. For now, scores are atomic and are basically just rhythms. They contain
events.

3. An atomic voice knows the audio source which the events of its associ-
ated scores would play/trigger.

4. An audio player can play audio from an audio source.

5. The performance can access the music library and acts as an audio
source.

6. The domain logic consists of three essential parts: the music library, a
performance that uses the music library and an audio player that can
play the performance.

2.10 Zooming/Panning vs. Editing

There is no limit to the complexity of one part-voice combination. For ex-
ample, if the user doesn’t create additional voice- and part groups, the per-
formance may consist of many (atomic-) parts and voices, so the editing
plane would be segregated into many ”part-columns” and ”voice-rows”. We
wanted to solve this base case before designing the navigation in part- and
voice-hierarchy.

Such a complex editing plane must allow the user to zoom and pan.
Fortunately, the tablet platform greatly supports fluid zooming and panning
and thereby helps us satisfying Requirement #10 [3].

In Figure (27), the interface has zoomed in on some events of voice 4.
Notice how the voice view on the right zoomed only in vertical direction
while the part view on the bottom zoomed only horizontally. The panning
position of both is also synced with the performance view (top left) that
displays the scores (light gray) containing events (white).

In our context, it is important that zooming is ”direction-sensitive”. In
Figure (28), the interface zoomed in only on the parts. Here, the user sees
timing information in detail but still oversees all voices without scrolling.

On the other hand, in Figure (29), the user sees voice 4 and its audio
samples in detail while overseeing the whole length of the performance, from
the beginning of part 0 to the end of part 1.

A challenge that came up here was to keep interaction fluid, modeless,
simple and direct while also differentiating between panning/zooming and

26 2 DEVELOPMENT PROCESS

Figure 27: The interface zoomed in

editing. The user should be able to adjust what section of the editing plane
he sees and also be able to edit events within the editing plane, all with two
fingers. In hindsight, our solution seems natural.

The editing plane resembles a scroll view, and users know how to interact
with those. Conventionally, zooming requires a 2-finger pinch, scrolling on
the desktop requires a 2-finger swipe and scrolling on the tablet requires a
1-finger swipe.

On the tablet, scrolling requires only one finger because no mouse pointer
needs to be moved. This simplification basically reduces the available ges-
tures for editing the scrollable content to 1-finger taps. However, for creative
content creation, the user should be able to draw content (see also Design
Principle 11 in [4]). Furthermore, content creation is the primary purpose,
and zooming/panning is secondary.

So, we reserved the single finger swipe gesture for drawing events. There-
for, scrolling (panning) requires two fingers in our prototype. However, once
the user ”grabbed” the whole editing plane (content view) with two fingers,
he can release one finger and still move (pan/scroll) around.

2.10 Zooming/Panning vs. Editing 27

Figure 28: The interface zoomed only horizontally.

Here, inertia scrolling becomes an essential ingredient of the interaction.
In our prototype, the user can temporarily release all fingers and still proceed
scrolling with just one. Only when all fingers are released and the motion
of the editing plane has been stopped, does the interaction switch back to
editing.

To make this work required some fine tuning. For example, the interface
shouldn’t zoom while the user scrolls with two fingers. And it shouldn’t
accidentally scroll a little when he intents to return to editing by stopping
inertia scrolling with a short tap.

There are two situations in which it isn’t immediately obvious whether
the interface is still in scrolling mode. One is simply the inertia scrolling
decelerating. Requiring a minimal scroll speed on touch down to proceed
panning would restrict 1-finger scrolling and, therefore, only utilize a trade-
off.

The other situation occurs when the viewport hits the edge of the editing
plane and suddenly stops scrolling. In this case, the user might accidentally
draw because scrolling stopped so abruptly.

28 2 DEVELOPMENT PROCESS

Figure 29: The interface zoomed only vertically.

A possible solution for both situations would be to draw a half-transparent
overlay over the whole editing plane during zooming/panning. This would
signify to the user that he has grabbed- and is currently effecting the whole
plane and is not editing its details. This would go well together with the
range overlay of event editing as we’ll see in the following section.

2.11 Drawing Events

The editing itself is straight forward. The user can draw events of arbitrary
length into an existing score by a simple 1-finger swipe over the score.

The event is not drawn in real time under the finger because the actual
effect of the gesture is context-dependent. What the user actually draws is
an editing range that marks a certain time interval within the score with a
red half-transparent overlay. When the finger is released, one of two things
happens:

1. If any events overlap with the range, these events are all deleted.

2.11 Drawing Events 29

2. Else (if no event overlaps with the range), a new event is created that
matches the range.

This has four advantages:

1. The swipe gesture is multi-functional, and its editing range gives clear
immediate feedback on what is being effected in which way. Still, draw-
ing is as simple and intuitive as it can be.

2. The user can cancel the gesture by releasing the finger outside the score
in which he touched down.

3. Because the range is quantized, a touch down already creates a range
of a minimal meaningful length. This means events can be created or
deleted with a single tap.

4. Multiple events can be deleted with one gesture.

In Figure (30), the editing range is being drawn over three events of
voice 1. When the user releases his finger, the three events in the editing
range are deleted. If the same gesture is repeated, i.e. if the user draws
the same editing range again, a new event will be created that matches the
editing range, as can be seen in Figure (31).

In the current implementation, the quantization raster doesn’t yet scale
with the zoom level. When this will be implemented, editing will be even
more powerful. The user will naturally adjust the scope of the effect that his
gestures have by zooming in and out. He will also be sure that the interactive
elements (ranges) will have a minimal size on the screen, appropriate for
finger touches.

30 2 DEVELOPMENT PROCESS

Figure 30: In this case, the editing range will delete three events.

2.11 Drawing Events 31

Figure 31: The user created a long event for voice 1.

32 3 TECHNICAL ASPECTS

3 Technical Aspects

Now, we’ll discuss some technical issues of our implementation, including
those that result from system specifics, i.e. from the platform and frameworks
on which the prototype runs.

3.1 System Specifics

We used XCode and Objective-c to implement the prototype for the iPad.
The basic audio framework that the code has to rely on is Apple’s Core
Audio. Fortunately, Michael Tyson published The Amazing Audio Engine
(TAAE), a more convenient open source framework that lies on top of Core
Audio. We employed it in our code.

TAAE inherits the pull model of audio processing from Core Audio, which
means that the destination of an audio stream is responsible for requesting
the data it needs from the source. Destinations depend on sources.

To deliver the requested data, a source might itself pull data from yet
another source. In this way, several ”audio units” can be connected. One
unit can use several sources (inputs) to create its output, but it typically
serves only one other unit as a source.

So this pull hierarchy constitutes a tree. Its leafs are inputs like audio
files, microphones or algorithmic sound generators. The root is typically the
device’s main audio output.

There are several ways to implement our model and it is, indeed, tempting
to directly map the hierarchies in the model onto some pull hierarchies in
the audio programming frameworks. However, we ended up dropping this
attempt because it intertwined technical details with the domain model. It
was cumbersome to implement and made it hard to change the model which
is unacceptable with our experimental iterative process.

So we completely decoupled the technical requirements of audio program-
ming frameworks from the domain-driven requirements of the model. To the
frameworks, the whole domain model looks like one audio unit. The down-
side of this approach is that we might miss out on some performance benefits
that Core Audio could contribute. However, the connection between model
and framework may still be tightened in the future, when the domain model
has stabilized.

3.2 Code Structure

The experimental nature of this project demanded flexibility. The code must
be easily changeable, even its large-scale structure. Therefor, it must be

3.2 Code Structure 33

clean code embedded in a clean architecture.

The class dependence diagram of Figure (26) depicts a subset of the imple-
mentation. This subset only describes the domain model and its dependence
on general audio. It is quite independent of system specifics (iOS, UIKit, file
in-/output ...) and independent of the business logic and presentation of our
specific application.

We explicitly distinguish both dimensions: system dependence and ap-
plication dependence. Code is more or less system specific and more ore less
application specific. These two dimension are independent. So we employ
a layered architecture but unlike other layered architectures (for instance
the one of DDD [1]) it isn’t one-dimensional. Instead, it unfolds in a 2-
dimensional space:

application-
specific

system-
specific

abstract

Figure 32: The graphical direction of class dependency arrows in this space
(diagram) would convey a specific meaning.

Of course, specific code depends on abstract code. So, semantically, de-
pendency arrows in the space depicted by Figure (32) would only point to
the left or downwards. Because a graphical diagram should also be readable,
some arrows in a concrete layout might have a drift to the side, in addition to
their principal direction (see how the performance uses a part in Figure 26).

Figure (33) shows the Model-View-Controller pattern laid out in our de-
pendence space.

Figure (34) shows what conventional one-dimensional layered architec-
tures do in terms of application- and system dependence. Such architectures
have no place for system specific code that is independent of the application.
But anyway, they have a hard time differentiating within either dimension.

In the system dimension, we only distinguished model- and system-adaption-
layer. In the application dimension, we distinguished portfolio-, domain-,
business- and presentation layer as depicted in Figure (35).

To discuss the problems of traditional architectures, the benefits of our
dependence space and the meaning of the layers that we picked would be
a paper in itself. So for now, we just point out that, in the architecture

34 3 TECHNICAL ASPECTS

application-
specific

system-
specific

abstract

View

Model Controller

Figure 33: The distinction between application- and system dimension puts
the MVC pattern and its dogmas into a much clearer perspective.

of DDD [1], the domain model layer sits on top of the infrastructure layer.
Thereby, the DDD architecture profoundly violates the Dependency Inversion
Principle and subverts a defining insight of DDD, which is that the model
should be isolated and independent.

In the following, we’ll illustrate our code through additional class depen-
dence diagrams. One diagram showing all classes would not be readable, so
we go through the different subsets that were identified by Figure (35).

Figure (26) showed the domain model together with the model portfolio.
The latter comprises a simple audio data class as well as the interfaces (pro-
tocols) for audio players and audio sources. The interfaces enable system
specific code to serve model objects. Thereby, model objects can trigger the
use of system specific services, while model classes are still decoupled from
the system.

The implementation of the audio player protocol as well as an audio file
class belong to the system portfolio and use a wrapper class of TAAE to
access the system’s audio capabilities. The whole portfolio layer is depicted
in Figure (36).

We already presented the domain model. The domain system only con-
tains a domain controller that is responsible for 1.) getting audio data from
files into the domain model and 2.) injecting the audio player implementation
(TAAE Audio Player) into the domain model (dependency injection).

A domain is an area of application and not the application itself. There-
fore, it is the business layer that provides the application specific use cases.
In our implementation, this layer is still very thin. The only significant use
case of the prototype is the creation of musical content for testing.

Finally, the most application specific layer is the presentation layer. It is

3.2 Code Structure 35

application-
specific

system-
specific

abstract

Layer 1

Layer 2

Layer ... Layer ... Layer N

Figure 34: A conventional architecture of N layers

laid out in Figure (37). This layer presents the domain and its use cases to
the user. It also transmits user input back to business- and domain layer.

The presentation logic handles those tasks independently of system specifics.
It could just as well be implemented in standard C++ without additional
libraries. It defines what the user sees and how the screen is laid out. It
also defines the user interactions to which screen elements can respond and
translates that input into use cases or domain operations.

The presentation system uses the UIKit framework to implement the
presentation logic for iOS.

There is a symmetry in the presentation layer that reflects how general
presentations correspond to specific UIView classes. And, although it isn’t
expressed in the diagrams, there is also a correspondence between presenta-
tion logic and domain model. Most presentations are there to present some
domain model object.

36 3 TECHNICAL ASPECTS

application-
specific

system-
specific

abstract

Model / Logic System Adaption

Portfolio

Domain

Business

Presentation

Model Portfolio System Portfolio

Presentation Logic

Business Logic

Domain Model

Presentation System

Business System

Domain System

Figure 35: The architectural layers of our implementation

application-
specific

system-
specific

abstract

Model / Logic System Adaption

Portfolio
TAAE Audio

Player

TAAE Audio
File

Audio Player
Protocol

TAAE Audio
Engine

Audio Data

Audio Source
Protocol

Figure 36: The portfolio layer of our implementation

3.2 Code Structure 37

application-
specific

system-
specific

abstract

Model / Logic System Adaption

Pr
es

en
ta

tio
n

View
Controller

Presentation
Logic

Score View

Performance
View

Performance
Presentation

Score
Presentation

Presentation Presentation View

Editor Presentation

Voice
Presentation

Part
Presentation

Editor View

Scroll
View

Part View

Voice View

Event ViewEvent
Presentation

Figure 37: The presentation layer of our implementation

38 3 TECHNICAL ASPECTS

3.3 Hacking and Reinventing the Scroll View

In our first attempt to implement zooming and panning, we utilized the
UIScrollView of UIKit. But in the end, Apple’s scroll view API didn’t suit
our needs. These are the biggest issues we encountered:

1. UIScrollView scales its content after it has been rendered, so when the
user zooms in, the content gets pixelated.

2. The interface should be able to display elements related to whole voices
or whole parts at the edges of the editing plane, just like Garageband
displays piano keys or information related to instrument tracks on the
left. For these views, zooming had to be restricted to one dimension.
So their content not only got pixelated by zooming but also distorted.

3. Those marginal scroll views for voices and parts have to be synchro-
nized with the editing plane (performance view). Zoom level and scroll
position of all three scroll views need to be in sync. In this regard,
the UIScrollView seems to handle both dimensions differently and just
wasn’t transparent enough to make this work for our application.

4. We could not predict or explain how the UIScrollView interacts with
Autolayout, especially in combination with manipulating the content
transformation matrix.

5. UIScrollView doesn’t let us configure the way it zooms in and out. For
example, zooming out should shift the focus to the center of the editing
plane, independent of where the user does the pinch gesture. Zooming
out locally makes no sense at all. Technically, the viewport collides
with the edge of the editing plane, which the UIScrollView answers
with awkward corrections ofter the zoom out. And semantically, the
user wants to regain context and overview when he zooms out.

6. UIScrollView doesn’t let us overwrite what gestures are used for pan-
ning and zooming.

7. UIScrollView ”hides” certain gestures from its content view.

8. UIScrollView does not zoom vertical- and horizontal dimensions inde-
pendently. We want to differentiate how much the user actually pinched
in each dimension so that he can zoom more into voices than parts and
vice versa.

39

We ended up completely reinventing the scroll view, including collision
detection, inertia scrolling, zooming and panning. What our implementation
does fundamentally different is how it scales the content. We don’t just
manipulate the transformation of the rendered content view but actually
change the view’s size before it gets rendered.

To make this practical, all subviews of the content view are laid out with
Autolayout. We also adjusted the scroll view and all its subviews in such a
way that gestures can be handled in the appropriate content (sub-)view and
in the scroll view itself. Our solution performs surprisingly well and solved
the enumerated problems.

4 Conclusion

The most urgent issue now is a performance bottleneck caused not so much
by the amounts of raw audio but by the naive way it is accessed. It not only
restricts playback- but also the graphical presentation of audio.

Both problems are quite transparent. We solved them conceptually but
have yet to implement those solutions. In short: Realtime audio playback
will be enabled through a caching hierarchy that exploits the voice hierarchy.
Fast audio visualization will be enabled through an approximation tree (level
of detail) for each audio data object. It might also be helpful to cache an
image for each audio data object, since the same audio data can appear in
many different events on the screen.

The next step for the user interface is to provide the user with ways to
navigate voice- and part hierarchy. This navigation is implemented in the
domain model and technically solved but not yet reflected by the interface.

In this project, we delivered the proof of principle that the Human-Audio
Interaction Lab as we prepared it in [3], is technically feasible and conceptu-
ally promising. We also built a foundation that is solid and flexible enough
for further intense experimentation.

There are, of course, countless implementation tasks that haven’t yet been
done at this point. But, fortunately, this is an experiment in progress, and
it’s supposed to go on for the subsequent master thesis and beyond.

40 REFERENCES

References

[1] Evans. Domain-Driven Design: Tackling Complexity In the Heart of
Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[2] S. Fichtner. Direct manipulation. Seminar: Theories and Models in HCI,
http://hailbringer.com/writings/dm_seminar_paper.pdf, 2013.

[3] S. Fichtner. What music composition interfaces require. Master-Seminar,
http://hailbringer.com/writings/what_music_composition_

interfaces_require.pdf, 2014.

[4] M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R. Pausch,
T. Selker, and M. Eisenberg. Design principles for tools to support cre-
ative thinking. In B. Shneiderman, G. Fischer, M. Czerwinski, B. Myers,
and M. Resnick, editors, NSF Workshop Report on Creativity Support
Tools, pages 25 – 39. National Science Foundation, Washington, DC,
2005.

http://hailbringer.com/writings/dm_seminar_paper.pdf
http://hailbringer.com/writings/what_music_composition_interfaces_require.pdf
http://hailbringer.com/writings/what_music_composition_interfaces_require.pdf

	Introduction
	Goal
	Terminology
	Platform

	Development Process
	Piano Roll and Arranger
	Integrating Piano Roll und Arranger
	Structural Recursion
	Naive Abstraction
	Elegant Abstraction
	The Library
	The Base Case: Audio Data
	Elegant Abstraction in Action
	Simplification
	Zooming/Panning vs. Editing
	Drawing Events

	Technical Aspects
	System Specifics
	Code Structure
	Hacking and Reinventing the Scroll View

	Conclusion
	References

