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Figure 1: Forest scene simplified with h = 0.7 and total λ = 0.06. The viewing volume contains 368 trees made of 61 mio vertices

Abstract

This bachelor project is dedicated to interactive rendering of tree
foliage using stochastic simplification on the graphics hardware.

After giving a brief overview on latest level of detail methods for
foliage rendering, the concept of stochastic simplification as intro-
duced by [Cook et al. 2007] is discussed followed by a report on
our GPU based implementation of this method for tree foliage. In
the end we can show that stochastic simplification offers a substan-
tial performance benefit and allows to produce quality images of
complex plants at real time on customary hardware.
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1 Introduction

Visualizing nature is one of the biggest challenges in the field of
computer graphics. Objects that result from natural growth rather
than construction are hard to emulate on a computer and demand
far more geometry information to describe them faithfully. A first
system to generate authentic images of complete nature scenes was
introduced by [Deussen et al. 1998].

Computational generation of plant images must deal with both ma-
jor steps of displaying 3d-graphics: modeling and rendering. Nu-
merous procedural methods and some sophisticated tools have been
developed with respect to botanical knowledge, that allow to cre-
ate realistic and highly detailed plant models. While modeling is
concerned with the effectiveness of image generation, rendering
must address its efficiency. Since rendering techniques emerging
from other areas are often applicable to plants, various possible ap-
proaches to improve efficiency unfold. One common strategy to in-
crease efficiency is to cull invisible geometry in eye space. Another
one is to simplify geometry in object space which is often referred
to as ”level of detail”. While culling is mostly independent of the
type of objects (except for heuristic methods of occlusion culling),
simplification can take advantage of the way objects are structured
and perceived. Foliage for instance has some unique characteris-
tics and deserves special attention in the context of simplification.
Section (2) gives a brief overview on simplification methods for
foliage. Section (3) explains stochastic simplification with an eye
on foliage rendering. Section (4) shows how we implemented the
method for tree models utilizing the GPU. In sections (5) and (6)
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we conclude this work by summarizing its results and giving an
outlook on potential ways to improve the implementation.

2 Related Work

A 3d-scene is usually defined by much more information than its
rendered image reflects. Some obvious reasons for this are per-
spective distortion, rasterization and occlusion. The goal of simpli-
fication is to speed up rendering of geometry by processing only a
minimal set of simple primitives. A central task is to determine a
smaller set that results in the same visual experience. To accomplish
that simplification approaches aim to find primitives that effectively
describe a scene in object space. Therefore most related work relies
on a multiresolution hierarchy for object approximation.

2.1 Hierarchical Simplification

For the cost of increased preprocessing and memory demands hi-
erarchical simplification allows to drastically reduce the number of
rendered primitives. It is based on the principle that each node in
a hierarchy approximates its children. Looking at how nodes are
created and rendered, two broad directions of hierarchical simpli-
fication may be identified which will be reviewed in the following
sections.

2.1.1 Image Based

Geometry information can be approximated by images. [Szijártó
and Koloszár 2003] suggested to create impostors from leaves in a
first rendering step and use them to render the tree foliage in a sec-
ond step. [Behrendt et al. 2005] presented an algorithm to cluster
model vertices and find hierarchical billboard approximations wich
were used to render large amounts of trees in the background. Sim-
ilar techniques were applied by [Dietrich et al. 2005] and [Colditz
et al. 2005].

2.1.2 Geometry Based

Geometry based approaches approximate models by geometric
primitives like points, lines and polygons. An early attempt to
dynamically mix polygons and simpler primitives in a hierarchical
representation was presented by [Chen and Nguyen 2001]. They re-
place polygons by points for distant objects. [Deussen et al. 2002]
introduced a system for interactive rendering of whole eco systems.
For efficiency distant plants were simplified with respect to their



visual importance and rendered with points or lines depending on
their structure. The number of rendered primitives was made ad-
justable.

In recent years the idea of applying multiresolution rendering tech-
niques to foliage geometry received a lot of attention. Most algo-
rithms basicly apply agglomerative clustering and join leaves con-
trolled by an error function. [Remolar et al. 2003] and [Rebollo
et al. 2007] develop their Foliage Simplification Algorithm to al-
low for variable levels of detail and take advantage of the GPU.
Xiaopeng Zhang and Qingqiong Deng did intense research on the
matter. They implemented efficient foliage simplification in [Deng
et al. 2006] and [Zhang et al. 2006]. [Deng et al. 2007a] introduced
a simplification method dedicated to coniferous foliage. Consid-
eration of botanical knowledge was added by [Deng et al. 2007b].
[Deng and Zhang 2008] and [Deng et al. 2009] further improved
efficiency of memory and CPU usage and exploited rendering ca-
pabilities of the GPU.

2.2 GPU Based Simplification

To benefit from GPU power, rendering must be divisible in numer-
ous independent equal tasks for parallel processing. Those tasks
correspond to the processing of single elements like points, leaves
or cluster nodes. [Szijártó and Koloszár 2003] first process leaves to
create images and then render these impostors in a second render-
ing stage. Their method successfully takes advantage of the local
randomness of leaves without maintaining a hierarchy. Nodes from
a conventional multi resolution hierarchy can not be stored in GPU
memory without preparation, because the GPU can only select a
continuous array segment for processing. Usually the CPU has to
traverse the hierarchy to determine which nodes have to be pro-
cessed. Then the relevant nodes are passed to the GPU. Transfering
elements to the GPU each frame heavily decreases performance.
A method to solve this is called ”sequential point trees” and was
introduced by [Dachsbacher et al. 2003]. They showed how to se-
quentialize a point hierarchy and store it on the GPU. The only data
passed to the GPU is the fraction of elements to be processed result-
ing in great performance. [Rebollo et al. 2007] also store vertex data
on the GPU and adapt their Foliage Simplification Algorithm to the
graphics hardware. Another solution to the problem was developed
by [Kalaiah and Varshney 2005] who relieved data transmission by
stochastic compression of clusters and geometry extraction on the
GPU. Recently [Deng et al. 2009] used an advanced version of se-
quential point trees to render foliage. All those sequentialization-
and extraction strategies become dispensable with stochastic sim-
plification as the following sections will show.

2.3 Stochastic Simplification

Hierarchical methods were applied to all kinds of objects. Tree
foliage however has some distinct properties:

• It consists of large amounts of elements (leaves) which are
similar in size, geometry and color.

• Elements are independent units and do not represent continu-
ous surfaces.

• The global distribution of elements reflects the object (tree)
structure whereas their local position can be considered as
equally distributed or random.

Stochastic simplification as introduced by [Cook et al. 2007] is ap-
plicable to objects with these very properties. It was successfully
used at Pixar to speed up rendering of high quality images. Its ba-
sic idea is that such objects can be well approximated by a random

subset of their elements. So instead of generating additional ap-
proximating primitives as a preprocessing step, they just render a
fraction of the given elements. This straight forward method is well
suited for parallel processing on GPUs. The next section will look
at it in greater detail and estimate how it can be applied to foliage.

3 Concept

Stochastic simplification is done by selecting a subset from the
given elements for rendering. The selected elements must then be
modified in color, size and possibly opacity to preserve the objects
overall appearance. This modification only depends on the fraction
of rendered geometry which of course is the same for each element
of an object, so it can be done on the GPU.

3.1 Level of Detail

First the application must decide on how many elements to exclude.
The object area B in image space is measured in pixels of the
bounding box. B0 is the predefined minimal area of an object at
which it is rendered in full detail. Then the fraction b = B/B0

indicates the area reduction of an object in image space and acts as
the basis of decision. If b < 1 the object is simplified with respect
to b. It is possible to simplify different types of objects at individ-
ual levels by giving each one its own minimal size B0. Since the
computation of a bounding box area in pixels is more complex than
getting an objects camera distance d, we calculate b differently: If
simplification should start at distance d0 then

b = d0
2/d2 (1)

where d is the objects actual camera distance. While b just repre-
sents the potential visible fraction of an objects full size in image
space, the level of detail λ is the actual fraction of rendered geom-
etry. Apart from the object size [Cook et al. 2007] also consider
motion blur to determine λ. Since we’re not rendering for a lim-
ited frame rate and plants are not moving in world space, we don’t
use motion blur effects. So λ only depends on b and an adjustable
parameter h:

λ = blogh(1/2) (2)

h specifies the value of b at which half of the elements are rendered
and is used to calibrate the aggressiveness of detail reduction. We
get the linear reduction of λ = b by setting h = 1/2. [Cook et al.
2007] state that

”h should never be greater than 1/2 because λsize
would decrease faster than b; this would mean using
fewer elements per pixel as the object got smaller, and in
order to preserve the overall object area those elements
would have to get larger on the screen as the object got
smaller.”.

However we don’t inherit that restriction, because that very effect
might be intended. Objects with greater camera distance are less
important and might as well be displayed in less image space detail.
After all, simplification is mostly a trade off between performance
and image quality, and a more aggressive simplification combined
with a great enough value of d0 might just be fine for interactive
foliage rendering as Figure 1 demonstrates. Furthermore, distant
plants are more likely to be occluded by others.

3.2 Excluding Elements

The easiest way to select a fraction λ from N given elements is to
choose the first λN elements from the buffer they are stored in. This
guarantees for changes of λ that elements are always excluded (and



(a) original model (b) λ = 0.05 without contrast preservation (c) λ = 0.05 with contrast preservation

Figure 2: The effects of area- and contrast preservation on an aesculus hippocastanum model

included) in the same order. Randomizing the buffer order during
preprocessing ensures that every determined subset is equivalent to
a random selection. Sorting elements by their visual importance
can further improve approximation precision.

3.3 Area Preservation

Excluding (1−λ)N elements from rendering scales down the total
area of rendered elements by λ. To compensate for that it may seem
logical to scale up each selected element by 1/λ. However to com-
pute a correct scaling factor s we have to consider the difference
between total- and visible area. The more elements an object con-
tains, the smaller is one elements contribution to the objects visible
area because more of the element is occluded by others. Aiming to
preserve visible area [Cook et al. 2007] showed that s can be cal-
culated using the ratio r of one elements average visible area to the
objects total visible area:

s =
1− (1− r)1/λ

r
(3)

Due to the stochastic nature of this simplification method, object
geometry is rather overlaid by some noise than substantially dis-
torted. Deformations may only be visible at the silhouettes of far
distant objects.

3.4 Contrast Preservation

The smaller a sample of a population is, the greater is the error
under which it predicts the populations average of some attribute.
In our case the error under which selected elements approximate
the local or global average color grows with decreasing level of
detail. A single leaf for example may drastically misrepresent the
overall foliage color. [Cook et al. 2007] explain the importance
of this effect by looking at how colors of individual fragments are
determined during rasterization. Because simplification leads to a
smaller number of elements per fragment, the approximation error
of each fragment grows and causes higher contrasts between pixel
colors. In addition to the involvement of supersampling this expla-
nation implies the assumption that image quality is preferred over
efficiency and that simplification only takes place when elements
become smaller than pixels. However when elements are larger

than pixels, contrast preservation becomes even more necessary be-
cause approximation errors become directly visible and the effect
of color blending during the process of perception also gets lost
with increasing element size. Optimal contrast preservation would
set a selected elements color to the average color of the excluded
elements it locally approximates. As mentioned earlier elements
were randomly selected and ought to be processed independently
and equally, so we can not determine their corresponding local av-
erage. Anyway, local averages adjust to the global average as the
level of detail decreases, which enables us to approximately calcu-
late a corrected color c′ for an element color c only considering a
factor αλ and the overall average color c̄:

c′ = c̄+ αλ(c− c̄) (4)

αλ ∈ [0 . . . 1] is a weight that declares how strongly the final color
c′ represents the original color c for a given level of detail λ. [Cook
et al. 2007] found that αλ =

√
λ conserves overall color variance.

3.5 Smooth Animation

Now we are able to render only as much elements as needed while
preserving the objects appearance. But continuous changes of λ for
a certain object would still result in artifacts due to elements pop-
ping in and out. This happens when moving the camera or shifting
parameter h or d0. To reduce that effect elements are slowly faded
in and out either by size or by opacity. [Cook et al. 2007] linearly
fade elements over the interval [(λ−0.1)N . . . (λ+0.1)N ] in terms
of buffer position.

4 Implementation

4.1 Basics

Implementation was done with C++, OpenGL and GLSL in the
XCode environment. After loading a tree model from file, we mod-
ify the normals of its leafs for better shading results. The orien-
tation of the leafs can be considered as random, so shading them
based on their implicit normals would not reflect the volumetric
shape of the tree crown. We average each leaf normal with the nor-
mal pointing from the crowns center to the leaf. Shading is done in
a fragment shader and involves computation of diffuse and specular



(a) h = 0.2, λ = 0.38 (b) h = 0.5, λ = 0.11 (c) h = 0.8, λ = 0.02

Figure 3: A forest scene in 800 × 600 pixels. The viewing volume contains 332 trees made of 52.2 mio vertices

intensities, while light color is a continuous function of the angle
between light- and polygon normal simulating the artistic method
of contrasting blue toned ambient- against red toned sunlight. To
interactively examine the scene a camera system was implemented
that allows game like movement. Finally a sky box was added to
evaluate results against a realistic nice background.

4.2 Performance

To be able to compare the performance of our implementation with
conventional methods on scenes with hundreds of tree instances, we
first applied some common principles of efficient rendering. Strong
acceleration was derived from comparing immediate mode against
vertex arrays and vertex buffer objects. A single tree instance was
rendered through the standard pipeline provided with normals, col-
ors, texture coordinates and vertices. Vertex arrays were 4.5 times
faster than immediate mode while VBOs were able increase frame
rate by factor 5.1. In the following we assume VBOs being used.

Another substantial performance gain was achieved by culling. We
implemented both- clip space- and eye space culling. To really
challenge those implementations 1000 trees were put into a scene.
Without simplification frame rate was approximately zero when no
culling was applied, so culling was evaluated using simplification
with parameter h = 0.5. Now having 10% of all trees in the view-
ing volume both methods were around 7 times faster than not to cull
at all. But the different complexities only reveal them selves when
not masked by a relative high rendering load. When all trees were
culled, clip space culling only reached 27% of the performance of
eye space culling. As expected, clip space culling can not compete,
although we handle projection- and view matrix by ourselves in the
camera system. Due to the perspective distortion caused by pro-
jection, all corners of a bounding box must be transformed to clip
space and tested against the clipping cube. Culling in eye space
only demands to test a bounding sphere against the planes of the
viewing frustum and avoids multiplying view- and projection ma-
trix.

4.3 Simplification

For each tree instance its level of detail and scaling factor are deter-
mined by the CPU according to equations (2) and (3). The average
ratio r ≈ 0.0001 of our tree models was determined by experiment-
ing. Before rendering the first λN vertex buffer elements, λ and s
are passed to the GPU.

4.3.1 Area Preservation

Our leafs are plain polygons. They are scaled by translating their
vertices in a vertex shader. Therefore the coordinate relative to the
center of the corresponding leaf must be provided with each vertex.
We will call this the polygon coordinate. Since tree models are fully
textured the color buffer object is available for storing those coor-
dinates. How must polygon coordinates be scaled, to increase the
area of a leaf by factor s? Decomposing the leaf polygon reduces
this problem to scaling a triangle area as shown in Figure 4 where
C is the center the polygon and c is any of its sides.

a

b

c

C

α

β

γ

Figure 4: Scaling the area of a plain polygon

Scaling sides a and b by the same factor causes a parallel shift of
c but doesn’t change any of the angles. Now the triangle area T is
given by the formula

T =
|a|2sin(β)sin(γ)

2sin(α)

where |a| denotes the length of side a. The scaled area sT resolves
to

sT =
(
√
s|a|)2sin(β)sin(γ)

2sin(α)

So polygon coordinates must be scaled by
√
s.

4.3.2 Contrast Preservation

The leafs of one tree are very similar in color. Since our tree models
texture all their leafs with one and the same bitmap, there appeared
to be no need for adjusting colors. Nevertheless contrast preser-
vation might still be necessary. Shading leads to high contrasts in
brightness due to the random character of leaf normal orientations.
So to preserve contrast we adjust shading instead of coloring. As
our shading implementation is based on Phong Shading, the varying
part of visible intensity is a weighted sum of diffuse- and specular



reflection. To modify the variance of that part we must know its
average value. Since we set the exponent of the specular cosine to
1, both terms are the product of a weighting factor and the cosine
of the angle between two normalized vectors. So their average can
be approximated using the expectation value E(cos) which is the
average cosine over all possible angles:

E(cos) =
2

π

π/2∫
0

cos(x) dx =
2

π
≈ 0.63662 (5)

Note that the specular term is weighted by zero if the angle between
eye- and reflection vector is greater than π/2. Figure 2 illustrates
area- and contrast preservation showing orthographic projections of
a tree model with different parameters.

4.3.3 Smooth Animation

To smoothly animate changes in level of detail we fade out ele-
ments by reducing their opacity or size. Because fading depends
on the elements relative position in the buffer, we make that posi-
tion available to the GPU by storing it as a value between 0.0 an
1.0 in the alpha channel of the vertex color. The RGB channels al-
ready provide polygon coordinates as previously explained. When
using the w component of the vertex, shaders can not be switched
off because the standard pipeline would not set w to 1.0 for ma-
trix transformations. Our vertex shader extracts the buffer position
i and calculates a fading factor f which declares how visible the
element shall be. f is a function of λ and i. A self-evident way to
define f is to linearly fade within a certain radiusR around i which
makes it appropriate to render min(N, (λ+R)N) elements.

f =

{
1− i−λ+R

2R
if i > λ−R

1 else
(6)

We experimented with some modifications of this function:

• increasing performance by rendering only λN elements and
fade out earlier so that f = 0 for λ = i

• smoothing f over the fading interval using the function
smoothstep provided in GLSL

• linear and quadratic shrinking of R with increasing λ so that
all elements are fully visible for λ = 1

• increasing performance by linear shrinkingR with decreasing
λ so that only a certain fraction of rendered elements is faded
rather than a certain fraction of all elements

• choosing R = min(1 − λ, c) for a certain constant c so that
all elements are fully visible for λ = 1

Rendering only λN elements didn’t preserve visible leaf density
even when the second modification was added. When shrinking R
with growing λ the fading interval got either too large for small val-
ues of λ or too small for large ones. But choosingR as a fraction of
λ won back some performance without disturbing fading smooth-
ness. We also kept the last modification to make sure trees within
camera distance d0 don’t get altered.

To fade elements by opacity the vertex shader passes f to the frag-
ment shader which multiplies the alpha channel of the texture by f .
This leads to better image quality than fading by size especially
when no anti aliasing technique is applied. But utilizing alpha
blending also has two drawbacks: First, the alpha test and -blend
function can hardly be modified for other purposes. For example

the alpha test must succeed for values greater than zero in our im-
plementation. A second drawback is that f is applied to each frag-
ment although it is constant over the whole element. The fragment
shader may be completely relieved of the fading issue by letting the
vertex shader scale elements by fs instead of s.

5 Results

Evaluation of results was done on a MacBook Pro 4,1 with 2.4 GHz
and a GeForce8600M GT. It involved rendering scenes containing
up to 1000 instances of 10 different tree models. Without simplifi-
cation those models are made of 157368 vertices at average. Figure
5 illustrates how the total detail level of a scene and frame rate re-
late to parameter h. Both plots reflect the same data set of a scene
where 90% of all trees were culled and viewport resolution was
set to 800 × 600 pixels. Note that models are not simplified at all
for h = 0. Figure 3 demonstrates the capabilities of our imple-
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Figure 5: Reduction of rendered geometry and performance gain
for increasing parameter h in a forest scene of 15.8 mio vertices

mentation in terms of performance and quality preservation. When
moving through a scene the smoothness of fading could be verified
for large values of h. With lower h leafs become smaller in image
space and fading artifacts get masked by aliasing artifacts. Turning
contrast preservation off clearly decreases image quality.

6 Future Work

A lot of possible improvements are left for future implementa-
tion. One basic concern is the effectiveness of element usage which
brings up some continuative questions: Can billboards somehow
be integrated in order to cover more visible area with less primi-
tives? Are there any other primitives thinkable that might replace
far distant elements? How can the priority order of elements be
optimized for leafs of a tree crown? Would the use of an octree
speed up culling? It is also very desirable to use different shader
programs for foliage and edges, so a separate mesh simplification
methods could be applied to trunks and edges. Furthermore dedi-
cated foliage shaders would be able to realize visual effects specific



for foliage like half transparent shading or procedural movement.
The contrast preservation in our shading implementation should be
evaluated on foliage with a maximum variance in color, because in
such a case it might not be appropriate to regard only light inten-
sity. Apart from that it appeared that parameter r is quiet sensitive
to different types of trees. It should be determined for each model
individually. A models visible area in image space might be ap-
proximated by rendering it to an off screen buffer and summing up
the alpha values. Then the average visible element area would be
the element area multiplied by 2/π analogue to (5).
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