
Direct Manipulation

Sebastian Fichtner
sebastian.fichtner@uni-konstanz.de

ABSTRACT
To many interaction designers, the term direct manipulation
seems either too fuzzy or too plain obvious. In both cases, it
isn’t very helpful. In this seminar paper, instead of reiterating
dos and don’ts, we tell the story of direct manipulation and
dive down into its theoretic foundation. By integrating dif-
ferent academic perspectives, we clarify related concepts and
make the direct manipulation philosophy accessible as a prag-
matic way of thinking about interaction. Thereby, we propose
an accommodated interface space and show that direct ma-
nipulation is still at the core of most of today’s innovations in
human-computer interaction.

1. PARADIGM CHANGE
When the Xerox Star machine was introduced in 1981, we
entered the era of windows, icons, menus and pointers.

Figure 1. The XEROX 8010 Star Information System

Figure (1) depicts the Xerox Star interface. Steve Jobs copied
that interaction concept and implemented it in the Apple Lisa,
which became the first commercial computer to offer a graph-
ical interface. For more than 30 years, WIMP has dominated

Theories & Models in HCI, Prof. Harald Reiterer, Hans-Christian Jetter
Konstanz University, 2012/13

the interfaces of operating systems. It’s what we used every-
day. In fact, we’ve been exposed to the WIMP interaction
style for so long that we’ve come to confuse it with its idea.
Today, as we’re moving on to mobile operating systems, the
WIMP era is coming to an end, but the story of its underlying
design philosophy is just getting exciting. To understand that
story, we have to start at its beginning.

Even before the rise of computer graphics, when inter-
faces were still character based, a new quality of interaction
emerged. The most prominent example is VisiCalc. It was
the first spreadsheet software ever and mysteriously success-
ful (Figure 2).

Figure 2. The VisiCalc interface

Today, we identify four key features that made it special:

• The table it displays was something very common in the
business world. Everyone understands how to use a table-
and what to use it for.

• All numbers are visible at once.

• All numbers can be changed.

• The effects of those changes on subsequent calculations are
immediately visible.

From our modern perspective, those features might not seem
so groundbreaking, but VisiCalc marks a paradigm change.
When it was released in 1979, it became the killer application
for the Apple II.

The first academic to point out the pattern behind such suc-
cessful applications was Ben Shneiderman. In 1982, one
year before Apple released the Apple Lisa, he coined the



term direct manipulation (DM) for the principles he had ob-
served [14]. He described a certain outstanding quality of
user satisfaction along with the kind of interface that seemed
to cause it. According to Shneideman, users reported the fol-
lowing experiences:

• Mastery of the system

• Competence in performance of their task

• Ease in learning the system originally- and in acquiring ad-
vanced features

• Confidence in their capacity to retain mastery over time

• Enjoyment in using the system

• Eagerness to show it off to novices

• Desire to explore more powerful aspects of the system

This informal observation may seem a little unscholarly, but
we have to acknowledge that, at the time, the sensitivity to
human factors of software was just developing. Shneiderman
stated in the same ’82 publication:

”The egocentric style of the past must yield to humility
and a genuine desire to accommodate to the user’s skills,
wishes and orientation.”

To Shneiderman, DM wasn’t just an observation. It had to be
the first consequence of embracing the user.

Other authors had already alluded to single aspects but didn’t
grasp the whole pattern. Here is Shneiderman’s integrated
portrait of DM:

• Continuous representation of the object of interest

• Physical actions or labelled button presses instead of com-
plex syntax

• Rapid incremental reversible operations whose impact on
the object of interest is immediately visible

• Layered or spiral approach to learning that permits usage
with minimal knowledge

These features are not supposed to be a definition. They are
a description in the context of 1982. Shneiderman was, of
course, inspired by the shift from command line- to visual-
and, finally, WIMP interfaces. However, we shall not over-
look the generality of his thoughts. In particular, we should
see the difference to WIMP, that we mentioned in the begin-
ning. Neither does DM need to implement WIMP, nor does
a WIMP interface necessarily comply to DM. The following
modern reformulation by Apple Computer still captures the
same notion [1]:

”Direct manipulation allows people to feel that they are
directly controlling the objects represented by the com-
puter. According to the principle of direct manipulation,
an object on the screen remains visible while a user per-
forms physical actions on the object. When the user per-
forms operations on the object, the impact of those op-
erations on the object is immediately visible.”

Another early example Shneiderman gave are display editors.
Like Visicalc, their interfaces are character based. Still, they
have a visual quality to them. That’s why they are often called
visual editors. Back then, these full screen editors were a
spectacular improvement over line editors. Today, the species
of character based text editors is almost extinct since modern
graphical tools are way more convenient. The most promi-
nent survivor is Vi on Unix systems.

However, for the most definite illustration of DM principles,
Shneiderman points away from business software:

”Perhaps the most exciting, well-engineered – certainly,
the most successful – application of direct manipulation
is in the world of video games.”

Among his examples are some of the pioneering classics like
Pong, Breakout, Donkey Kong and Space Invaders.

From all this observation, Shneiderman compiled the practi-
cal benefits DM has to offer:

• Learnability: Novices can learn basic functionality quickly,
usually through a demonstration by a more experienced
user.

• Expert performance: Experts can work extremely rapidly
to carry out a wide range of tasks, even defining new func-
tions and features.

• Retention: Knowledgeable intermittent users can retain op-
erational concepts.

• Less error messages: Errors are rarely needed to be han-
dled with messages.

• Fast evaluation: Users can immediately see if their ac-
tions are furthering their goals, and if not, they can simply
change the direction of their activity.

• Less Anxiety: Users experience less anxiety because the
system is comprehensible and because actions are so easily
reversible.

• Confidence: Users gain confidence and mastery because
they initiate an action, feel in control and can predict sys-
tem responses.

Once DM has been articulated and exemplified, its spirit
and genius become intuitively comprehensible. The benefits
listed above are beyond mere observation. They’re more of
a hypothesis. Still, they don’t seem to call for a proof. We
recognise them by our everyday computer interaction. Con-
sequently, the challenge is to explain why DM seems so nat-
ural and desirable. We need an intellectual understanding of
what DM is, how it works, when it works best and when it
doesn’t work at all. In the end, we want to be able to system-
atically think about user interfaces and fully exploit the ben-
efits of DM. These questions motivated an academic debate
that started at fundamental theory and later moved to the ap-
plication in specific domains. In this seminar paper, we care
about the first phase. Absorbing general aspects shall enable
us to transfer and apply them to any of our own domains.



2. EXPLAINING EXPLAINATION

The Syntactic/Semantic Model
When Shneiderman initiated the debate about DM, he already
contributed a model to explain it:

”The success of direct manipulation is understandable in
the context of the syntactic/semantic model.”

He had developed this model of user behaviour earlier in
the context of programming language experimentation. The
model distinguishes syntactic and semantic knowledge in
long term memory. What it thereby really utilises is a con-
tinuum that stretches from precise bits of action, like clicking
a mouse button, to abstract meanings like the user’s purpose
in life. Shneiderman didn’t invent this continuum, it plays a
significant role in semiotics, computer science and linguistics.
Nonetheless, by referring to the layers of syntax and seman-
tics, he marks a point on it. In his model, syntactic knowl-
edge comprises all knowledge about the interface that carries
no meaning. In this sense, syntactic knowledge not only in-
cludes the grammar of the interaction language but also its
vocabulary, morphology, phonology and phonetics. Semantic
knowledge, on the other hand, is all knowledge which is in-
dependent of the interface, it may stretch to pragmatics and
beyond.

Our continuum of abstraction is also a meter of relevance.
More important than how to hit a target (syntax) is what the
current target is (semantics), and even more important is why
it was chosen (pragmatics). Now, we easily see the implica-
tion for interaction design: The machine is irrelevant. It’s just
a tool. What the user really thinks about is his goal- not his
tool. Every moment he has to think about a tool is an interrup-
tion, and interruptions prevent flow. DM aims to support the
user by lifting the interface to a more abstract and meaning-
ful level. As the user has to deal less with the tool and more
with his goal, the tool disappears. He is not sitting in front
of a machine anymore but in the middle of his own domain
(Figure 3). Under these conditions, the benefits Shneiderman
claimed for DM, indeed, become self-evident.

talk

Machine

User Domainact

act

Figure 3. Direct- and indirect (dashed lines) interaction with the domain

Terminology
The message of DM certainly has a general core that still
rings true today. We shall adapt the interface to the way the
user thinks about achieving his goal. Yet, it also promotes

a specific assumption that roots in the time when DM was
conceived. In the seventies and eighties, applications were
reenacting what, previously, had been done without comput-
ers like writing documents, editing tables and playing. It was
assumed that the user thinks about achieving his goal in terms
of real world objects. Consequently, the interface has to make
these objects available. There would, at least, be some closely
corresponding real world environment as an analogy. Be-
cause of this intended ostensible identity, the literature about
DM neglects a crucial parting line that runs through terms
like metaphor, model or even domain. So, let us translate
these terms to our context:

1. A domain is an area of application. It refers to the user’s
high level goals, which are essentially independent of any
interface and not necessarily object oriented.

2. A model is a pragmatic theory. It provides a simplified
representation of a domain and enables us to think about
the domain rationally. The model incorporates objects and
rules. Two different models are relevant to us. One is the
mental model that the user has in mind. The other one is
the interface model.

3. A metaphor is an analogy to a model and may help repre-
senting it. Thus, the user may already be thinking about his
domain in terms of a metaphor, even before being exposed
to any interface.

To be clear: Mythology (metaphor) illustrates the condition
(model) of human nature (domain).

Practical Concerns
The implicit assumption of classic DM is that the domain is
already made of real objects so that it nicely maps to a model
and hardly needs any metaphors to be represented. The table
in VisiCalc is not a metaphor because it’s not supposed to re-
fer to anything other than a table. To the degree to that this
assumption fails, interface- and mental model fall apart, and
even more so do their metaphoric representations. The in-
terface designer, as far as his creative leeway allows, tries to
keep everything close together: domain, mental model, inter-
face model, mental metaphor and interface metaphor. Shnei-
derman gave some advice on what is needed to design a DM
interface:

• ”appropriate representation or model of reality”

• ”simple metaphors, analogies, or models with a minimal
set of concepts”

• ”representation must be meaningful and accurate to users”

• ”careful design and experimental testing will be necessary
to sort out the successful comprehensible approaches from
the idiosyncratic ones.”

However, the syntactic/semantic model already foretells
some limitations the designer has to face. Here is our inte-
grated and extended formulation of them:

1. A model and its metaphor often comprise no macro op-
erations, so there is a trade off concerning the abstraction



level at which the domain is represented. If it’s too low, mi-
cro management tasks are imposed on the user. If it’s too
high, certain operations can not be performed at all. Obvi-
ously, interface models tend to opt for functionality, which
is why the first recipient of the Turing Award warned us of
the Turing tarpit [2].

2. The representation of the domain can be misleading, since
it is always just a representation- never the domain itself.

3. The interface doesn’t help the user with problems that re-
side in the domain or his understanding of the domain.

4. As the interface adapts to the domain, it becomes domain
dependent.

5. DM is not virtual reality. Users always must learn how the
domain translates to the interface.

6. Domain conform visual navigation is often limited by
screen space.

7. DM tends to demand more system resources.

8. Making actions traceable or reversible would often break
the rules of model or metaphor.

9. The interface often has to be visual, which dismisses visu-
ally impaired users.

The basal limitation is, of course, the extent to which a do-
main can be represented faithfully. Yet, we often don’t want
to do that. A domain action may be cumbersome to repre-
sent, but it may also be a cumbersome action in itself. With
DM, we model and represent the domain pretty straightfor-
ward, so we have to keep in mind that it isn’t automatically
handy. Its physics and organisation impose constraints. Of-
ten, the very purpose of the application is to perform actions
that are, otherwise, impossible in the domain. Enslaving the
interface to its domain or metaphor by faithfully representing
indirect operations would certainly counter the intent of di-
rect manipulation. It is a basic modelling task to dereference
unnecessary indirections. As a simple illustration, take the
cockpit view of a racing game. In the real world, we turn the
steering wheel. In a game, we don’t do that because what we
actually want is to turn the car. Thus, designing a DM inter-
face begins not with representing a model but with actively
modelling the domain. Although, the user’s mental model
may not be particularly cumbersome, it may diverge from the
interface model built by the designer. Now, who would have
thought that there is actually some conflict between DM and
user expectations? We’ll return to this problem in the next
chapter.

3. DIRECTNESS
In 1985, three academics were particularly dissatisfied with
the explanations of DM that had been given, so they came
together and published the next milestone paper on the
topic [10]. Those three were Edwin L. Hutchins, James D.
Hollan and, perhaps the most influential figure from the field
of HCI, Donal A. Norman. They aimed for a cognitive ac-
count of DM to explain its advantages as well as its disadvan-
tages. One of their basic assumptions was that the sensation

of directness is the product of a number of factors, and that
it must involve a cost and a trade off. They don’t necessarily
contradict Shneiderman but strive for more precision.

Cognitive Distance
We interpreted the syntactic/semantic model as a continuum
from physical details in the machine to abstract meanings in
the user’s mind. On this continuum, DM shifts the machine
closer to the user so that he has to deal less with low level
issues. Hutchins et al. investigated the remaining distance. It
is always up to the user to bridge the gap. He has to trans-
late his goal to the interface language and backwards. In a
way, he becomes the interpreter of his own mind. Because
this cognitive effort is directed to the tool instead of the goal,
it is experienced as a burden. Let us make this clear: We
assume the user to be curious, creative and capable, but we
acknowledge that thinking about meaningless matters annoys
him. That is how Hutchins et al. understand directness as a
quality that relieves the user of thinking. Or the other way
around: distance = cognitive load. Thus, directness is not a
property of the interface alone. It is the closeness between
interface and user goals (Figure 4).

MachineUser

Cognitive Distance

Evaluation

Execution

Figure 4. Indirectness as the cognitive effort of execution and evaluation

Further dissecting this cognitive distance, Norman introduced
the gulf of execution and the gulf of evaluation. Few months
later, in 1986, he published a book that eventually established
both terms in the world of HCI [12]. The two gulfs pay tribute
to the fact that input and output language of the interface may
greatly diverge. Translating goals to machine input poses a
different challenge than to translate machine output to a state
of achievement.

Cutting the Distance
The second distinction about distance roughly corresponds
to the syntactic/semantic model. As the list of limitations in
Chapter (2) suggested, the user always has to translate his no-
tion of the domain to the interface language, no matter how
well the interface is designed. Limitation (1) particularly in-
dicates that the interface model may not always be abstract
enough for the user’s high level goals. This part of the adap-
tion to the interface relies on semantic knowledge so it ac-
counts for semantic distance. At this point, the user still has
to execute or articulate his specific intention through a phys-
ical input action. This adaption accounts for articulatory dis-
tance, which can be thought of as the syntactic side of inter-
action. Semantic- and articulatory distance add up to the total
distance between user and machine (Figure 5).

Let’s walk through a simple example. Suppose our goal is
to get rid of a document. We bridge the semantic distance



Semantic 
Distance

Articulatory 
Distance

InputGoal

OutputAchieve-
ment

translate execute

interpretevaluate Result

Intention

Figure 5. Semantic- and articulatory distance at both gulfs of interaction

by realising that the office that our system somehow repre-
sents incorporates the notion of a trash can. We translate
our goal to the intention of throwing the document into the
trash. Now, we bridge the articulatory distance by using the
mouse to drag the document icon onto the trash can icon. We
experience great articulatory directness. Firstly, because the
physical movement of our hand correlates perfectly with the
intended movement of the document on screen and, secondly,
because the trash bin is now filled. However, the experienced
semantic directness depends on our mental model of the of-
fice. If our first instinct was to rip the document apart and
forget it, then remembering the bin and evaluating whether
the document has really gone was a burden.

Interestingly, the example continues the point that we made
at the end of the last chapter. Even if we had immediately an-
ticipated the trash and, thus, experienced more semantic di-
rectness, the action would have been cumbersome. We would
have shared our model with the model of the interface, but
because this model is so obedient to the office domain, it isn’t
as direct as it could be. The spirit of DM demands of the
designer to teach us what we want- not to ask for it.

Figure (6) summarises the relation between some of the layers
that we discussed until now.

Form of

Physical
Action

Model
Interface

Mental
Semantic

Knowledge

Syntactic
Knowledge

Domain

Semantic 
Distance

Pragmatics

Semantics

SyntaxArticulatory 
Distance

Vocabulary

Figure 6. From cognitive distance back to the syntactic/semantic model

Articulatory Distance
Hutchins et al. were well aware that input- and output devices
determine the limit of articulatory directness:

”The restriction to simple keyboard input limits the form
and structure of the input languages and the restric-
tion to simple, alphanumeric terminals with small, low-
resolution screens, limits the form and structure of the
output languages.”

They continued:

”Increasing the articulatory directness of actions and dis-
plays requires a much richer set of input/output devices
than most systems currently have.”

Since these statements were published in ’85, countless tech-
nological innovations have facilitated articulatory directness.
The greatest boost certainly came from touch screens. Se-
mantic directness, on the other hand, remains a design issue
that is getting more and more complex, as the articulatory in-
teraction languages get richer.

Semantic Distance
We identify two fundamental approaches of handling seman-
tic distance: conformity and convergence. Let us explicate
them in a little more essayistic style and even risk taking
sides.

Conformity
The first challenge for the interface designer is to model the
domain for semantic directness and balance the trade off men-
tioned in Limitation (1), while also conforming to the user’s
mental model. Since this is nearly impossible to achieve, he
focuses on the second challenge, which is to find a representa-
tion that is at least compatible to any metaphor the user might
have applied to his mental model.

The challenge for the user is literally to get used to how the
interface represents the domain. To a skilled user, the inter-
face may feel more semantically direct because he automated
mediating steps thereby regaining some flow and autonomy.
Though they admit that automation doesn’t actually reduce
semantic distance, Hutchins et al. state:

”The frequent use of even a poorly designed interface
can sometimes result in a feeling of directness like that
produced by a semantically direct interface.”

We want to argue that effort reduction through automation
always feels problematic, at least on a subconscious level
because the actions taken out are less meaningful. A psy-
chopath, at some point in his childhood, has separated his
actions from his motivations in order to conform to some au-
thority [9]. Just like that, the long time user of a poorly de-
signed interface, at some point during his adaption, has sep-
arated his intentions from his goals in order to conform to
the system. One practical problem is that he gets dependent
on the interface and on his own set of tasks. Whenever one
of both changes, he has to dig down again to the low level
elements of which his automated behaviour was once consti-
tuted. Also, a cumbersome interface is seldom the best one
available. For every command line tool, someone has built
a high level visual interface. That’s what freedom and com-
petition do. Nowadays, users intuitively understand how fast
that dynamic works and only bother to get into a product if



it’s as concise, elegant and close to their domain as can be. In
contrast, learning a poorly designed interface by root mem-
orisation and thinking of that as expert knowledge is what
psychopaths do.

Convergence
Conventional design gets us only so far, and practice is not a
real option. However, there is a third way, and it poses a task
to the designer as well as the user.

An interface can not match the user’s mental model all the
time. One reason are the limitations discussed in Chapter (2).
Another one is the mental model itself. So, what is a men-
tal model anyway? It’s what the user has learned. It cer-
tainly isn’t an accurate account of the domain. Instead, it’s
simplified, distorted, fuzzy and amorphous. Moreover, it de-
pends on the user’s life experience, education and cultural
background. So, instead of guessing his thoughts, what if the
interface could shape them? What if the user would be natu-
rally taught to adapt his conceptualisation of the problem so
that he comes to think of it in the same terms as the interface?
In any case, the application is supposed to provide a powerful
way to think about the domain. When it also teaches that, the
user’s mental model is guaranteed to be a consistent match
and predictor of the interface model.

Now, is it still appropriate to try to anticipate the user’s notion
of the real world? Are real world metaphors generally acces-
sible? There is another aspect to that. The world and the
machine are blending, and if it isn’t simply becoming invis-
ible, the machine becomes the world. As we’re assimilating
the nature and ubiquity of applications, the need for analogy
vanishes, and metaphors get displaced by mascots. A cloud
doesn’t make us think of rain anymore. At the same time,
it doesn’t explain anything. It doesn’t have to. The idea of
networked servers and clients is all too familiar.

Also, computers evolve at such a speed that they already de-
vour external metaphors. Think of those taken from storage
mediums: film, tape, disc or book. Young people have more
experience with the digital applications than the physical ob-
jects. The interface explains to them its metaphor, instead of
the metaphor explaining the interface. Furthermore, we’re so
overwhelmed with information and concepts that digital data
loses its role as a tool and becomes the domain itself.

There is only one direction. The real world, which means
the world that doesn’t have an interface, won’t keep up with
technological and conceptual transformation. It won’t be the
place of many domains, and it won’t provide meaningful
metaphors. Since interface designers create much of our ex-
perience, it is up to them to provide genuine models and rep-
resentations, even if those inventions start out as references to
themselves. Hutchins et al. get to the same conclusion:

”But if we restrict ourselves to only building an interface
that allows us to do things we can already do and to think
in ways we already think, we will miss the most excit-
ing potential of new technology: to provide new ways to
think of and to interact with a domain.”

Finally, we might solve the intricate trade off that we fre-
quently referred to. As pointed out by Limitation (1), the
designer is forced to either sacrifice semantic directness for
functionality or to mess up model and metaphor. However,
if he is the one who creates both, he may not just integrate
macro operations in a low level model but design the model
from the outset so that it scales well with the user’s goals.

Semantic distance plays a significant role in applications for
software development. That is why the syntactic/semantic
model stems from the context of programming languages.
The idea of scalable models really became manifest in func-
tional programming languages like Lisp. Paul Graham
wrote [8]:

”In Lisp, you don’t just write your program down toward
the language, you also build the language up toward your
program. [...] once you abstract out the parts which
are merely bookkeeping, what’s left is much shorter; the
higher you build up the language, the less distance you
will have to travel from the top down to it.”

A Lisp programmer has neither a micro management problem
nor does he miss functionality. That principle is exactly what
we need to reduce semantic distance. The model should in-
corporate an innate scalability so that, from within the model
world, the user can naturally choose the precise abstraction
level that he deems interesting.

The problem with the third way is that it’s hard. In order to
create a powerful scalable tool, the designer has to be more
involved in thinking about the domain model. In order to ap-
ply that tool, the user has to learn a new way of thinking about
his goal. In order to converge, both must be willing to think
differently. Another recipient of the Turing Award, E. W. Di-
jkstra, said about the untapped potential of simplification in
software design [4]:

”Firstly, simplicity and elegance are unpopular because
they require hard work and discipline to achieve and ed-
ucation to be appreciated.”

Very much in the sense of that statement, designers and users
opting for the way of convergence face initial difficulties that
conformity simply doesn’t bring up. The benefits, though,
might be huge.

4. MANIPULATION
So far, we’ve only elaborated on directness, but why didn’t
Shneiderman just speak of direct interfaces? Does a small
distance not imply a direct manipulation interface? Appar-
ently, it doesn’t.

Engagement
Directness, as previously described, only implies minimal
cognitive load. Selecting a menu option, completing a web
form or googling can all be very direct interactions, but they
normally don’t count as DM. We’d have to try hard to see
them as manipulations of interesting objects. We may also
notice how they lack a certain quality of engagement that
would spread from playing around with objects.



With this kind of reasoning, Hutchins et al. establish engage-
ment as a distinct quality of interaction that is independent of
directness. They attempt to span a two-dimensional space of
interfaces. Yet, we may notice that its dimensions are some-
how correlated. The lack of engagement may simply be inter-
preted as semantic distance. If the user needs to manipulate
interesting objects to experience the interaction as less of a
burden, then he longs for less cognitive load. Thus, the dis-
tinction between small distance and engagement seems quite
fuzzy. Hutchins et al. even express their explanation of en-
gagement in terms of directness:

”Direct engagement occurs when a user experiences di-
rect interaction with the objects in a domain. Here there
is a feeling of involvement directly with a world of ob-
jects rather than of communication with an intermediary.
The interactions are much like interacting with objects
in the physical world. Actions apply to the objects, ob-
servations are made directly upon those objects, and the
interface and the computer become invisible.”

How is this different from what we already learned about dis-
tance? The authors go on to list four minimum requirements
of direct engagement, which mostly describe directness. The
first requirement even explicitly states:

”Execution and evaluation should exhibit both semantic
and articulatory directness.”

So, if directness is a precondition of engagement, how can
both be independent enough to span a space? We’ll try to sort
this out in the following.

Conversation
What Hutchins et al. were getting at is to contrast manipula-
tion with conversation. We already mentioned the example of
deleting a document. The conversational approach is to mark
the document and select the menu option that says Delete.
This isn’t even purely conversational since we still identify
the document by simply pointing to it. However, we don’t
throw it away by ourselves, instead we utter a command to
the system, which, in turn, tells us how the operation went.
The interface represents a partner with whom we have a con-
versation about an assumed model world.

Hutchins et al. came to understand engagement and manip-
ulation as the absence of conversation. By factoring out en-
gagement, they restrict the meaning of semantic directness to
whether the interface model is abstract enough for the mental
model. At this point we also have to recap that the problem of
cognitive directness is mainly a problem of semantic direct-
ness. Having said all that, completing a web form, selecting
an option or following the instructions of a software wizard
can, indeed, feel very direct, and the space of interfaces (Fig-
ure 7) makes a little more sense to us.

The opposite of high level conversation with a wizard is low
level manipulation of a model world. Both variants do not
count as DM but may be appropriate for certain applications.

high level
language

direct
manipulation

low level
world

low level
language

D
ire
ct
ne
ss

Engagement
Conversation Model world

In
di

re
ct

D
ire

ct

Figure 7. Interface space according to Hutchins et al. (We inverted the
vertical axis.)

5. MIXED MODE
Hutchins et al. enabled fundamental insights into the anatomy
of DM. In terms of our understanding, it is a precise idea, but
in terms of scientific evaluation, it is rather vague and hard to
operationalise. The potential impact of each benefit claimed
by Shneiderman depends on the domain, the user and on how
DM principles are implemented. Different studies rejected
different benefits so research questions had to become more
specific: For a given domain, which aspects of DM result
in which benefits? These questions led to a greater appre-
ciation of the fact that practical interfaces often complement
manipulation with conversation. Desktop operating systems
mix a model world of folders and documents with the conver-
sational approach of menus, dialogs and wizards. Probably,
they do it for good reason.

Manipulation vs. Conversation
We came to think of conversation as a cumbersome mode
because it is conceptually indirect (Figure 3). However, the
paradox is that conversation sometimes feels more direct than
manipulation, which led to a debate about how contrary both
interaction modes really are.

Before entering this debate, we need to point out that the liter-
ature still tends to take direct manipulation for manipulation
although the interface spaces make a clear distinction there.
We don’t dive into the details of all the criticism that has been
lavished on DM because much of that only applies to the ma-
nipulation aspect and strives to make a case for conversation.
Instead, we proceed with our attempt to integrate different
theoretic perspectives and, thereby, free the DM philosophy
from misconceptions.

From early on, Shneiderman was aware of the superiority
conversation can have over manipulation. In 1982 he re-
marked:

”Knowledgeable and frequent users prefer command
languages because in many cases they permit faster task
completion.”



Still, Shneiderman participated in the ongoing debate arguing
on the side of manipulation [16].

At the Personal Systems Laboratory of Hewlett Packard,
David M. Frohlich conducted intense research on the mat-
ter [5, 6]. In 1993, he noted that conversation ”leads to a
language-based form of interaction which exploits the instru-
mental and regulatory functions of language ...” Considering
directness, he said:

”In fact, the entire debate about the relative advantages
and disadvantages of language versus action based in-
terfaces turns on an attempt to explicate the conditions
under which each is most direct.”

In an attempt to integrate both interaction modes, he proposed
a social definition of directness. According to Frohlich, con-
versation induces three kinds of indirectness. We identify
them as semantic distance, convention and implication.

1. Semantic distance
”... cognitive effort involved in describing certain concepts
in language.” This indirectness should correspond to the se-
mantic distance of the conversational interface. It is espe-
cially high when the intentions involve spatial information,
like when explaining directions over the phone.

2. Convention
”... conventions of politeness [...] These kinds of inhibi-
tions and constraints appear to be relaxed with increases
in rapport between parties ...” If this is, at all, relevant to
interaction design, then only at the gulf of evaluation.

3. Implication
Participants of a conversation ”manage to mean much more
than they actually say [...] they rarely say directly what
they mean.”

On the basis of experiments conducted by Garfinkel in
1967 [7], Frohlich argued that implication had previously
been underestimated in the context of interfaces:

”All this is a puzzle for the original notion of direct inter-
action in HCI, since we have now described a pervasive
form of indirectness in conversation which seems to un-
derlie highly efficient interaction. Furthermore, its very
efficiency appears to rely on more rather than less cog-
nitive work being performed by the interactants.”

In order to better relate conversation to DM, we have to un-
derstand directness more accurately in terms of efficiency. We
don’t need to discard the idea that indirectness equals cogni-
tive load, like Frohlich does. We just have to grasp the gen-
erality of cognitive load. It is not about an absolute amount
of effort but about what we’re getting for it. The additional
effort of dealing with a conversation partner pays off when
this partner executes our high level commands. Instead of
searching for the trash bin, we right-click the document and
tell the system ”Move to Trash”. Instead of repeating a man-
ual action, we write a script of instructions for the system.
Through implication, conversation can be more efficient and,
thus, more direct. To make this point, Frohlich introduced
additional terms like social directness, graceful- and clumsy

direct
conversation

direct
manipulation

indirect
manipulation

indirect
conversation

D
ire

ct
ne

ss

Engagement
Conversation Manipulation

In
di

re
ct

D
ire

ct

mixed
mode

Virtual Partner Virtual World

Figure 8. Interface space according to Frohlich (We adjusted the labels
of the vertical axis.)

interaction. Figure (8) illustrates how he accommodated the
space of interfaces.

So, what is the big implication for us? First of all, Frohlich
confirmed that DM is just one area in a space of interface
types. Second, manipulation isn’t always the most appropri-
ate mode because conversation can be more efficient. Third
and most importantly, an interface may have to combine ma-
nipulation and conversation to hit the sweet spot of usability.
Mixed mode interfaces are especially needed for complex ap-
plications that incorporate visual and non-visual tasks. Ma-
nipulation alone would be more about interactive informa-
tion visualisation [6]. To advocates of pure manipulation this
means that it may have to be applied selectively to a more
specific aspect within an application. As early as in 1993,
Frohlich concluded quite philosophically:

”Fortunately there is a symmetry to these conditions
which means that language is often well designed to
overcome the problems with manipulation as a method
of interaction, and vice versa. This complementarity of
physical and social activity should not be seen as an ac-
cidental feature of system design but rather as a deep
property of human collaboration and perhaps even of life
itself.”

Agents
Of course, the consensus that most interfaces are – and prob-
ably should be – mixed mode interfaces didn’t end the dis-
cussion. After all, they present the designer with a dualism
that he still has to balance. So, how shall manipulation and
conversation blend? How shall the system be represented as
a partner of conversation? The obvious answer would be per-
sonification. In its most consequent implementation, the in-
terface represents the system as an agent, which is a virtual
character with whom the user may communicate.

The alluring quality of agents is that they may overcome the



barrier between conversation and manipulation. An agent
can be presented as an object that resides and acts within
the model world, just like an adversary belongs to our men-
tal model of playing table tennis. In this sense, conversation
would just be a form of DM. We would manipulate the agent
object by feeding it language expressions.

On the other hand, agents have proofed to be somehow diffi-
cult. As we might suspect by now, interfering with the model
and its metaphor provokes problems, but there is also a more
fundamental reason. Shneiderman already hinted that the rep-
resentation of real objects may be misleading. His warning
applies even more to objects that are supposed to behave
socially. A computer can easily visualise a character, but
it cannot adequately reproduce social interaction. In 1970,
Masahiro Mori had coined the term of the uncanny valley for
this mismatch of appearance and behaviour [11]. Frohlich
commented in 1993 [5]:

”The growing debate about interface agents seems to
turn on the extent to which this virtual partner should
be characterised explicitly at the interface.”

Ever since the Xerox Star machine started a revolution,
operating- and office systems have determined and reflected
what kind of interface users expect. Today, it seems that the
opposite approach to agents has come out on top. Microsoft
tried to establish agents when it introduced the Windows
search dog and the Office assistant, but both were widely per-
ceived as annoying and have been removed from their prod-
ucts. The conversational side of interfaces sticks to menus,
dialogs, scripts and the like. A more deliberate step toward
natural conversation has recently been taken by Apple Com-
puter. Although Siri provides a sophisticated personal assis-
tant to whom the user can actually speak, it is modestly repre-
sented as what it ultimately is: a microphone. In the end, we
primarily communicate with a system and only secondarily
manipulate a model world. The physical system gives rise to
a virtual model- not the other way around.

6. DELVING INTO SPACE
What we find most striking about Frohlich’s insights is that,
in our view, they pave the way for a space of interfaces that
makes more sense than the one suggested by Frohlich him-
self. Let us explain this in detail.

Logical Black Holes
Much debate and confusion stems from the ambiguity of the
term directness. We identify two fundamentally different
meanings.

1. Figure (3) illustrates conceptual directness. The interaction
is conceptually direct if the user is not delegating actions
to the machine but is himself engaged in acting on the do-
main. The resulting quality is engagement. To be engaged
also means to see and understand what is being done. It is
intrinsically linked to activities that are difficult to assess
in terms of efficiency like learning, exploring and playing.
Manipulation is the interaction mode that seamlessly trans-
lates to conceptual directness. It appeals to the senses and
can literally bring domain objects to the user’s mind.

2. The second kind is practical directness. The interaction is
practically direct if the user can express his specific goals to
the machine without cognitive effort. Frohlich recognized
that conversation feels direct because it’s efficient, but he
didn’t adapt the definition of cognitive directness, which
led him to split it in two types. Practical- is basically the
same as cognitive directness, but we emphasise the point
that, from the very beginning, it was meant to be all about
efficiency. The user wants to transmit a lot of information
to the system at the cost of little effort. The natural way
to do this is the natural way in which he exchanges infor-
mation: through conversation. Because the building blocks
of conversation (not necessarily language) are informative
(implication), abstract and flexible, they enable the user to
express his (high level) thoughts efficiently.

In summary, some important insights follow from all the de-
bate about directness, manipulation and conversation.

1. Manipulation means the natural way towards engagement.

2. Cognitive directness means efficiency.

3. Conversation means the natural way towards efficiency.

4. Great user experience demands engagement and efficiency.

Acknowledging these insights enables us to expose why the
proposed interface spaces (Figures 7 and 8) seem somehow
artificial or wrong. Note that directness in these spaces and
most other contexts means cognitive- (practical-) directness.

1. When directness and engagement are portrayed as inde-
pendent dimensions, conversation can’t be the absence or
converse of manipulation, instead it must correspond to di-
rectness.

2. A little engagement with a little directness should, in prin-
ciple, result in the same type of interface as high engage-
ment with high directness. The type at the bottom left just
has less of both dimensions and is worse than the one at the
top right.

3. Since engagement and directness are both desirable, the
optimum interface type should be at the top right. Instead,
Frohlich puts mixed mode interfaces in the middle.

4. Having mixed mode interfaces below directness and to the
left of manipulation suggests that there can be too much
directness or too much engagement.

The Depth of Simplicity
Now, we can resolve the repugnancy of the interface spaces
we discussed and get to a better understanding of how mixed
mode relates to DM. Figure (9) shows the interface space that
we envision.

So, where is direct manipulation in our space? Shneiderman’s
attempt to label the ideal interface type just wasn’t as subtle
as the understanding at which we arrive today, or maybe, he
wasn’t as distracted by dubious subtleties. While directness



high level
conversation

mixed
mode

low level
manipulation

poor
interaction

Engagement
(Manipulation)

E
ffi

ci
en

cy
(C

on
ve

rs
at

io
n)

Figure 9. Our space relies on an unmitigated notion of directness.

Engagement
(Manipulation)

E
ffi
ci
en
cy

(C
on
ve
rs
at
io
n)

normal design effort

doubled design effort

Figure 10. The weighting of design goals is independent of total effort.

can mean the general design goal, manipulation is a particu-
lar interaction mode that promotes conceptual directness (en-
gagement). Through declaring directness as practical direct-
ness (efficiency), mixed mode- and direct manipulation inter-
faces are revealed to be the same thing. We conjecture that,
from the very beginning, DM was meant to refer to mixed
mode interfaces as we understand them. In that sense, the
holy grail remains where efficiency meets engagement.

Apparently, there is a trade off between efficiency and en-
gagement. Both have to share the focus of the design pro-
cess and are somehow contrary as pointed out in Limita-
tion (1). Figure (10) illustrates what types of interfaces can
be achieved at two different levels of quantitative effort.

However, the co-dependence between efficiency and engage-
ment runs deeper. For a certain standard of usability, the de-
signer can not easily substitute one design goal for the other.
We may explain this in terms of micro economics [3]. Effi-
ciency and engagement don’t just add up to usability, instead

Engagement
(Manipulation)

E
ffi
ci
en
cy

(C
on
ve
rs
at
io
n)

normal usability

doubled usability

Figure 11. Usability as a product of efficiency and engagement.

Engagement
(Manipulation)

E
ffi

ci
en

cy
(C

on
ve

rs
at

io
n)

optimal interface type

realisable usability

realisable
effort

Figure 12. Maximising usability for the realisable amount of total effort

they are factors, and usability is their product. All factor com-
binations that produce the same amount of the product are
lying on a convex isoquant. The highest amount is achieved
where both factors are high. Look at Figure (11) to see how
interface types relate to usability standards.

The challenge for the designer is to really hit the sweet spot
between conversation and manipulation instead of just invest-
ing more time and effort. It doesn’t matter to this principle
what other design goals we might cram into the term usabil-
ity. Figure (12) finally shows how a balanced mix of interac-
tion modes maximises the quality of user experience.

Integrating Outliers
There is one last thing. Our space inherits two freaky inter-
face types. In the spirit of Hutchins et al., we labelled them
high level conversation and low level manipulation. With Fig-
ure (12) in mind, we might wonder why anyone would need
an interface type far to the left top or right bottom on the



effort line or in the whole space, respectively. We start ex-
plaining this by reconsidering why conversation is associated
with high level- and manipulation with low level interfaces.

The abstraction level of the interface is always relative to the
user’s goal, and that goal is always more abstract than the in-
terface model. No application has that make me happy button
that does it all. There is always a little cognitive distance to
walk down to lower level entities. Why down? Because if the
user would have to walk up, the application would be of no
use to him. If he has to talk in pre-built sentences and is not
allowed to arrange the words by himself, he can’t express his
goal. So applications approach the user from the complexity
below him.

Denying access to low level objects decreases engagement,
while denying high level commands decreases efficiency.
Providing all those levels is hard work on side of the applica-
tion designer, so he estimates on which the user wants to oper-
ate. The farther away an abstraction level is from the user, the
smaller is its contribution to usability, and the more expensive
it becomes for the designer to increase usability in that direc-
tion. The way Figures (10, 12) display our space implies that
efficiency and engagement come at equal cost because each
effort line (isocost) encloses an equal sided triangle with both
axes. Note that the designer chooses the location of the iso-
cost (his absolute effort) but not its slope. The slope reflects
the relative costs of engagement and efficiency.

When the user only needs a few high level operations, it’s
cheapest to design for efficiency and the isocost is more ver-
tical. When the user enters the stage at an already complex
level, engagement is cheaper and the isocost more horizontal
(Figure 13). Mixed mode interfaces like in Figure (12) are
made when the user likes to roam at many levels.

Engagement
(Manipulation)

E
ffi
ci
en
cy

(C
on
ve
rs
at
io
n)

low-level
manipulation

Figure 13. One mode may still be more effective (cheaper) than the other.

The designer can not build high level functions without lower
level building blocks, but he can provide low level objects
without topping them off. Opening the basement of a sky
scraper of which the user only needs the top level poses a
smaller risk than building a sky scraper of which the user only

visits the basement. Just providing the low level is also easier
than anticipating the user’s goals and building a hierarchy up
towards them. That is the reason why agents are so problem-
atic, while low level manipulation can be found everywhere.
Engagement tends to be cheaper, not only for complex appli-
cations.

In the most extreme case of low level manipulation, object
oriented design is practically omitted, and the interface model
has to reflect the domain in all its glory and complexity with-
out adding expensive higher levels. The most radical advo-
cate of this finding is Richard Pawson, who established the ar-
chitectural design pattern naked objects [13]. Actually, naked
objects not only determine the architecture of an application
but also the interface, which is generated generically from
a strictly domain driven model. Naked objects have been
successfully applied to dramatically complex domains. We
observe, once again, how meaningful interface design starts
with modelling. Or in the words of Steve Jobs [17]:

”It’s not just what it looks like and feels like.
Design is how it works.”

7. CONCLUSION
By pointing out the principles of DM, Shneiderman also
pointed academic awareness towards human factors of soft-
ware interfaces [14, 15, 16]. Major contributions to concep-
tualise human-computer interaction came from Hutchins et
al. [10], Norman [12] and Frohlich [5, 6].

We learned to distinguish semantic- from syntactic knowl-
edge, the gulf of execution from the gulf of evaluation,
articulatory- from semantic distance and conformity from
convergence. We came to conclude that the interface designer
has to be bold and start the design process with modelling the
domain in a way that makes the model intrinsically adaptable
to the user’s way of thinking. He also should be ambitious
enough to teach the user instead of guessing the user’s knowl-
edge.

We further deducted a fundamental trade off that seems to
underly all interfaces and is deeply connected to the core du-
alism and conflict of human nature:

interaction quality efficiency engagement
interaction mode conversation manipulation
kind of directness practical conceptual
user experience getting things experience the

done process
focus of attention abstract goal physical object
cognition thought sensation
medium (formal) language visuals, sound
legacy culture nature
explaination psychology biology
typical tasks collaborate, navigate,

retrieve, explore,
calculate, experiment,
compile, compose,
automate play

Balancing this dualism is the basic task of designing an ap-
plication. The best interfaces tend to mix interaction modes,



although it seems to us that the side of engagement is kind
of a basis on which the other side relies. When efficient con-
versation is too hard to achieve, the interface can (and often
does) fall back to engaging manipulation.

It remains unclear how this balance differs between the gulfs
of interaction or between semantic- and articulatory distance.
It may be the case that conversation is more dominant at the
gulf of execution, while manipulation is more important to
the evaluation side. Such questions are beyond the scope of
this work, but the insights we gained already made us think
differently about interaction design.

REFERENCES
1. Direct manipulation.

http://www.infovis-wiki.net/index.
php?title=Direct_manipulation, January
2013.

2. Turing tarpit. http:
//en.wikipedia.org/wiki/Turing_tarpit,
January 2013.

3. Breyer, F. Mikroökonomik. Springer-Lehrbuch. Springer,
2005.

4. Dijkstra, E. W. The next fifty years.
http://www.cs.utexas.edu/users/EWD/
ewd12xx/EWD1243a.PDF, 1996.

5. Frohlich, D. M. The history and future of direct
manipulation. Behaviour & Information Technology 12,
6 (1993), 315–329.

6. Frohlich, D. M. Direct manipulation and other lessons.
In Handbook of human–computer interaction (2nd ed),
Elsevier (1997), 463–488.

7. Garfinkel, H. Studies in ethnomethodology.
Prentice-Hall, 1967.

8. Graham, P. On Lisp: advanced techniques for Common
Lisp. Prentice Hall, 1994.

9. Gruen, A. The Insanity of Normality: Toward
Understanding Human Destructiveness. Human
Development Books, 2007.

10. Hutchins, E. L., Hollan, J. D., and Norman, D. A. Direct
manipulation interfaces. Hum.-Comput. Interact. 1, 4
(Dec. 1985), 311–338.

11. Mori, M. The uncanny valley. Energy 7, 4 (1970), 33 –
35.

12. Norman, D. A., and Draper, S. W. User Centered System
Design; New Perspectives on Human-Computer
Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ,
USA, 1986.

13. Pawson, R., and Matthews, R. Naked objects: a
technique for designing more expressive systems.
SIGPLAN Not. 36, 12 (Dec. 2001), 61–67.

14. Shneiderman, B. The future of interactive systems and
the emergence of direct manipulation. Behaviour and
Information Technology 1, 3 (1982), 237–256.

15. Shneiderman, B. Direct manipulation: A step beyond
programming languages. Computer 16, 8 (aug. 1983),
57 –69.

16. Shneiderman, B., and Maes, P. Direct manipulation vs.
interface agents. interactions 4, 6 (Nov. 1997), 42–61.

17. Walker, R. The guts of a new machine.
http://www.nytimes.com/2003/11/30/
magazine/30IPOD.html, November 2003.

http://www.infovis-wiki.net/index.php?title=Direct_manipulation
http://www.infovis-wiki.net/index.php?title=Direct_manipulation
http://en.wikipedia.org/wiki/Turing_tarpit
http://en.wikipedia.org/wiki/Turing_tarpit
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1243a.PDF
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1243a.PDF
http://www.nytimes.com/2003/11/30/magazine/30IPOD.html
http://www.nytimes.com/2003/11/30/magazine/30IPOD.html

	1. Paradigm Change
	2. Explaining Explaination
	The Syntactic/Semantic Model
	Terminology
	Practical Concerns

	3. Directness
	Cognitive Distance
	Cutting the Distance
	Articulatory Distance
	Semantic Distance
	Conformity
	Convergence


	4. Manipulation
	Engagement
	Conversation

	5. Mixed Mode
	Manipulation vs. Conversation
	Agents

	6. Delving into Space
	Logical Black Holes
	The Depth of Simplicity
	Integrating Outliers

	7. Conclusion
	REFERENCES 

